
SML# Document

Version 4.0.0

Atsushi Ohori Katsuhiro Ueno
The SML# development team

Apr, 2021

Contents

I Overview 3

1 Preface 5

2 About This Document 7

3 Overview of SML# 9
3.1 What is SML#？ . 9
3.2 History of SML# . 9
3.3 SML# Development Team and Contact Information . 10
3.4 Acknowledgments . 10

3.4.1 Project funding . 10
3.4.2 Third-party code and software tool used in SML# development 11
3.4.3 Collaborators . 11

3.5 Limitations in SML# version 4.0.0 . 12

4 SML# License 13

II Tutorials 15

5 Installing SML# 17
5.1 Prerequisites . 17
5.2 Debian GNU/Linux . 18
5.3 Ubuntu . 18
5.4 Fedora . 19
5.5 CentOS . 19
5.6 macOS . 20
5.7 Windows 10 . 20
5.8 Building from the source . 20

6 Setting up SML# programming environment 23
6.1 Unix-family OS，Emacs，and other tools . 23
6.2 Bootstrapping the SML# compiler . 24
6.3 Let’s try SML# interactive mode . 25
6.4 Let’s try SML# compile mode . 25
6.5 smlsharp command modes . 26

7 Introduction to ML programming 29
7.1 About the ML language family . 29
7.2 Declarative programming . 29
7.3 Representing computation by composing expressions . 30
7.4 Constants literals and built-in primitives . 30

7.4.1 int type . 31
7.4.2 real type . 31
7.4.3 char type . 32
7.4.4 string type . 32
7.4.5 word type . 32

iii

iv CONTENTS

7.5 Type bool and conditional expressions . 33

7.6 Compound expressions and function definitions . 33

7.7 Recursive functions . 34

7.8 Functions with multiple arguments . 34

7.9 Function application syntax . 35

7.10 Higher-order functions . 35

7.11 Using higher-order functions . 36

7.12 Imperative features of ML . 36

7.13 Mutable memory reference types . 37

7.14 Left-to-right applicative order evaluation . 37

7.15 Procedural control . 38

7.16 Loop and tail recursion . 38

7.17 let expressions . 39

7.18 List data type . 39

7.19 Principle in composing expressions . 40

7.20 Polymorphic functions . 40

8 SML# feature: record polymorphism 43

8.1 Record expressions . 43

8.2 Field selection operation . 43

8.3 Record patterns . 44

8.4 Functional record update . 45

8.5 Record programming examples . 45

8.6 Representing objects . 46

8.7 Polymorphic variants . 47

9 SML# feature: other type system extensions 49

9.1 Rank 1 polymorphism . 49

9.2 Value polymorphism restriction and rank 1 typing . 50

9.3 First-class overloading . 50

10 SML# feature: direct interface to C 53

10.1 Declaring and using C functions . 53

10.2 Declaring types of C functions . 54

10.3 Basic examples of importing C functions . 55

10.4 Using dynamically linked libraries . 56

11 SML# feature: Multithread programming 59

11.1 Programming with Pthreads . 59

11.2 Fine-grain multithread programming with MassiveThreads 60

12 SML# feature: seamless SQL integration 63

12.1 Relational databases and SQL . 63

12.2 Integrating SQL in SML# . 64

12.3 Query execution . 65

12.4 Query examples . 66

12.5 Other SQL statements . 66

13 SML# feature: dynamic types and typed manipulation of JSON 69

13.1 Dynamic typing . 69

13.2 Reification of terms and types . 70

13.3 Pretty printer . 71

13.4 JSON as a partially dynamic record . 71

13.5 Language constructs for JSON manipulation . 72

13.6 Examples of JSON programming . 72

CONTENTS v

14 SML# feature: separate compilation 75
14.1 Separate compilation overview . 75
14.2 Separate compilation example . 76
14.3 Structure of interface files . 77
14.4 Opaque types . 79
14.5 Treatment of signatures . 80
14.6 Functor support . 80
14.7 Replications . 82
14.8 Top-level execution . 83

III Reference manual 85

15 Introduction 87
15.1 Notations . 87

16 The SML# Structure 89
16.1 Programs in the interactive mode . 89

16.1.1 Evaluation of core language declarations . 90
16.1.2 Evaluation of module language declarations . 93

16.2 Programs in the separate compilation mode . 94
16.3 Major Components of SML# Programs . 96

17 Lexical structure 97
17.1 Character set . 97
17.2 Lexical items . 97

18 Types 101

19 Expressions 103
19.1 Elaboration of infix expressions . 104
19.2 Constants ⟨scon⟩ . 105
19.3 Long identifier expression ⟨longVid⟩ . 105
19.4 Record expression { ⟨lab1⟩ = ⟨exp1⟩ , . . ., ⟨labn⟩ = ⟨expn⟩ } 106
19.5 Tuple expression (⟨exp1⟩ , · · ·, ⟨expn⟩) and unit expression () 106
19.6 Field selector expression # ⟨lab⟩ . 107
19.7 List expression [⟨exp1⟩ , · · ·, ⟨expn⟩] . 107
19.8 Sequential execution expression (⟨exp1⟩ ; · · ·; ⟨expn⟩) 107
19.9 Local declaration expression let ⟨declList⟩ in ⟨exp1⟩ ;· · ·; ⟨expn⟩ end 108
19.10Function application expression ⟨appexp⟩ ⟨atexp⟩ . 108
19.11Field update expression ⟨appexp⟩ # { ⟨exprow⟩ } . 108
19.12Type constraint expression ⟨exp⟩ : ⟨ty⟩ . 109
19.13Boolean expressions ⟨exp1⟩ andalso ⟨exp2⟩ and ⟨exp1⟩ orelse ⟨exp2⟩ 109
19.14Exception handling expression ⟨exp⟩ handle ⟨match⟩ . 109
19.15Exception expression raise ⟨exp⟩ . 110
19.16Conditional expression if ⟨exp1⟩ then ⟨exp2⟩ else ⟨exp3⟩ 110
19.17While expression while ⟨exp1⟩ do ⟨exp2⟩ . 110
19.18Case expression case ⟨exp⟩ of ⟨match⟩ . 110
19.19Function expression fn ⟨match⟩ . 111
19.20Builtin types and builtin primitives . 111
19.21Static import expression: _import ⟨string⟩ : ⟨cfunty⟩ 113
19.22Dynamic import expression: ⟨exp⟩ : _import ⟨cfunty⟩ 115
19.23Size expression _sizeof(⟨ty⟩) . 115
19.24Dynamic type cast expression _dynamic ⟨exp⟩ as ⟨ty⟩ 115
19.25Case branch expression with dynamic type cast _dynamiccase ⟨exp⟩ of ⟨match⟩ 116

20 Patterns and Pattern Matching 119

21 Scope rules for identifier 123

vi CONTENTS

22 SQL Expressions and Commands 127
22.1 SQL Types . 127

22.1.1 SQL Basic Types . 127
22.1.2 The Type of SQL Logical Expressions . 127
22.1.3 Types for SQL Tables and Schema . 128
22.1.4 Types for SQL Queries and Their Fragments . 128
22.1.5 Types for SQL Handles . 129
22.1.6 SML#’s Policy of Typing SQL Expressions . 129

22.2 Extended ML Expressions for SQL Queries . 130
22.3 Database Server Description: The sqlserver Expression 131
22.4 SQL Value Expressions . 132

22.4.1 Expressions evaluated by SML# . 133
22.4.2 SQL constant expressions . 134
22.4.3 SQL identifier expressions . 134
22.4.4 SQL function applications and infix expressions . 134
22.4.5 Type cast expressions . 135
22.4.6 SQL logical expressions . 135
22.4.7 SQL column reference expressions . 136
22.4.8 SQL Subqueries . 137
22.4.9 Embedded SQL value expressions . 137

22.5 SELECT queries . 138
22.5.1 SELECT clauses . 139
22.5.2 FROM clauses . 139
22.5.3 WHERE clauses . 140
22.5.4 GROUP BY clauses . 140
22.5.5 ORDER BY clauses . 142
22.5.6 OFFSET or LIMIT clauses . 142
22.5.7 Corelated Subqueries . 142

22.6 SQL commands . 144
22.6.1 INSERT commands . 144
22.6.2 UPDATE Commands . 145
22.6.3 DELETE commands . 145
22.6.4 BEGIN, COMMIT, and ROLLBACK commands 145

22.7 SQL execution function expressions . 146
22.8 SQL Library: The SQL Structure . 147

22.8.1 Connecting to a database server . 148
22.8.2 executing SQL queries and retrieving their results 151
22.8.3 Utilities for SQL Queries . 151

22.9 SQL Library: The SQL.Op structure . 151
22.9.1 Workarounds for type inconsistencies . 152
22.9.2 SQL operators and functions . 153
22.9.3 SQL aggregation functions . 153

22.10SQL Library: The SQL.Numeric Structure . 154
22.11Difference from the standard SQL (Informative) . 154

23 Declarations of the core language and their interfaces 157
23.1 val declarations : ⟨valDecl⟩ . 157

23.1.1 val declaration interface : ⟨valSpec⟩ . 157
23.1.2 val declaration evaluation . 157
23.1.3 Example of val declarations and interface . 158

23.2 Function declarations : ⟨valRecDecl⟩ , ⟨funDecl⟩ . 159
23.2.1 Function declaration interface . 159

23.3 datatype declaration : ⟨datatypeDecl⟩ . 159
23.3.1 datatype declaration interface . 160
23.3.2 Examples . 160

23.4 Type declaration : ⟨typDecl⟩ . 160
23.4.1 type specification : ⟨typSpec⟩ . 160
23.4.2 Examples . 161

CONTENTS vii

23.5 Exception declaration : ⟨exnDecl⟩ . 161

23.5.1 Exception specification : ⟨exnSpec⟩ . 161

23.5.2 Examples . 161

24 Module language declarations and interface 163

24.1 Structure declarations : ⟨strDecl⟩ . 163

24.2 Structure expressions and their evaluation : ⟨strexp⟩ . 164

24.3 Signature expression : ⟨sigexp⟩ . 164

24.4 Module language interface . 166

25 Overview of SML# Libraries 167

26 Standard ML Basis Library 169

26.1 ARRAY . 170

26.2 ARRAY SLICE . 170

26.3 BIN IO . 171

26.4 IMPERATIVE IO . 172

26.5 STREAM IO . 172

26.6 BOOL . 173

26.7 BYTE . 173

26.8 CHAR . 173

26.9 COMMAND LINE . 174

26.10DATE . 175

26.11GENERAL . 175

26.12IEEE REAL . 176

26.13IO . 176

26.14INTEGER . 177

26.15INT INF . 178

26.16LIST . 178

26.17LIST PAIR . 179

26.18MONO ARRAY . 179

26.19MONO ARRAY SLICE . 180

26.20MONO VECTOR . 181

26.21MONO VECTOR SLICE . 182

26.22OPTION . 182

26.23OS . 183

26.24OS FILE SYS . 183

26.25OS IO . 184

26.26OS PATH . 185

26.27OS PROCESS . 185

26.28REAL . 186

26.29MATH . 187

26.30STRING . 187

26.31STRING CVT . 188

26.32SUBSTRING . 189

26.33TEXT . 190

26.34TEXT IO . 190

26.35TEXT STREAM IO . 191

26.36PRIM IO . 192

26.37TIME . 193

26.38TIMER . 193

26.39VECTOR . 194

26.40VECTOR SLICE . 194

26.41WORD . 195

26.42The top-level environment . 196

CONTENTS 1

27 SML# System Library 199
27.1 DynamicLink . 199
27.2 Pointer . 200
27.3 SQL . 200
27.4 SQL.Op . 200
27.5 SQL.Numeric . 200
27.6 Pthread . 200
27.7 Myth . 201
27.8 Dynamic . 202

28 The smlsharp command 205
28.1 Mode switch . 205
28.2 Common options for all modes . 206
28.3 Compile options . 206
28.4 Link options . 207
28.5 Interactive mode options . 207
28.6 Developers’ options . 208
28.7 Environment variables . 208
28.8 Typical examples . 208

28.8.1 Start an interactive session . 208
28.8.2 Compile a program . 208
28.8.3 Compile separately and link a program . 209
28.8.4 Generate a Makefile . 209

29 SML# Run-time data management 211
29.1 Runtime representation . 211
29.2 Effect of garbage collection . 212
29.3 Effect of unwind jumps . 212
29.4 Effect of multithreading . 213

IV Programming Tools 215

30 A parser generator smlyacc and smllex 217
30.1 The generated files . 217
30.2 The structure of a smlyacc input file . 217
30.3 The structure of a smlyacc output file and the interface file specification 218
30.4 The structure of a smllex input file . 220
30.5 The interface file for the generated lexer . 220

V SML# Internals and Data Structures 223

31 Preface 225

32 The SML# Source Distribution Package 227
32.1 The structure of the source package . 227
32.2 The SML# Source Tree . 227
32.3 compiler directory . 228
32.4 basis directory . 230

33 Control structure of the compiler 233
33.1 Compiler Start-up . 233
33.2 The compiler command main function . 234
33.3 The compiler toplevel . 234

VI Bibliography and other documents 237

Part I

Overview

3

Chapter 1

Preface

This is the official document of a functional programming language SML#. This document intends to
provide comprehensive information on SML#, including: tutorials on SML# programming, reference
manuals of the SML# language and the basis library, and, detailed descriptions of the internals and data
structures of the SML# system.

Send comments and questions to the authors.

June, 2017
Atsushi Ohori Katsuhiro Ueno
The SML# development team

5

Chapter 2

About This Document

This documents consist of the following parts.

1. Part I: an overview of the SML#.

2. Part II: SML# tutorials. The tutorials are structured in such a way that the reader can learn
SML# from programming basics to advanced programming features provided by SML#. We
recommend to read through this part quickly.

If you are in a harry, you may find the desired information in one of the following pages.

• How to install SML#: Chapter 5.

• smlsharp command parameters: Section 6.5.

• SML# development team and contact information: Section 3.3.

• On the name of SML#: Section 3.2 (History of SML#).

• SML# web page: https://smlsharp.github.io/

• SML# document in Japanese: https://smlsharp.github.io/ja/documents/4.0.0/

3. Part III: reference manuals on the SML# language and the libraries including Standard ML Basis
Library.

4. Part IV: Reference manuals on SML# tools (smllex, smlyacc, smlformat etc).

5. Part V: The internals and data structures of the SML# system.

6. Part VI: references.

In the version 4.0.0 of this document, Part IV and ?? are not completed. They are going to be
completed in the future version.

7

Chapter 3

Overview of SML#

This chapter outlines the SML# language and the compiler.

3.1 What is SML#？
SML# is a new programming language in the ML-family, having the following features.

1. Backward compatibility with Standard ML. SML# can compile all programs that conform
to the definition of the Standard ML[5] with a few exceptions.

2. Record polymorphism. SML# supports record polymorphism [9]. In SML# , field selection
operators # ⟨label⟩ and record patterns { ⟨field-pat⟩ ,...} are fully polymorphic. This feature is
essential in modular development of programs manipulating records, and is the key to extend ML
with SQL.

3. Seamless integration of SQL. SML# seamlessly integrates (currently a subset of) SQL. Instead
of providing built-in primitives to access database servers, SML# integrate SQL expressions them-
selves as polymorphically-typed first-class citizens. This allows the programmer to directly access
databases in your polymorphic ML code.

4. Direct interface to C. SML# programs can directly call C functions of your own coding or in
system libraries. The programmer need only declare their names and types, without writing mys-
terious “stubs” or conversion functions. The SML# generates external references to C functions,
which are resolved and linked by the system linker. Both static and dynamic linking are supported.

5. Separate compilation and linking. SML# supports true separate compilation and linking. By
writing an interface file, each source file is compiled separately into an object file in the standard
system format (e.g. ELF format.) The separately compiled object files are then linked together
possibly with C functions and libraries into an executable program.

6. Multithread support for multicore CPUs. The non-moving GC [16] and direct C interface
allow SML# code to directly call POSIX thread library. As far as the OS thread library support a
multicore CPU, SML# program automatically obtains multithread capability for multicore CPUs.
With the non-moving fully concurrent GC we have just developed, concurrent threads run efficiently
on a multicore CPU.

The SML# compiler and its runtime system are developed by the SML# development team. They
are open-source software distributed under the MIT license copyrighted by the SML# development team
(See Section 4). The current SML# development team consists of Atsushi Ohori (Tohoku University)
and Katsuhiro Ueno (Tohoku University) (in the alphabetical order).

3.2 History of SML#

The origin of the SML# can be traced back to the proposal of Machiavelli published in [11]. This paper
showed that ML with record polymorphism can be extended with SQL and reported a implementation
of a prototype interpreter.

9

10 CHAPTER 3. OVERVIEW OF SML#

In 1993, Atsushi Ohori extended the Standard ML of New Jersey compiler at Kansai Laboratory of
Oki Electric, and named the experimental prototype SML# of Kansai. The Internet still remembers
the posting of SML# of Kansai to the types mailing list (http://www.funet.fi/pub/languages/ml/
sml%23/description).

The name SML# of Kansai symbolized the field selector # ⟨label⟩ , which was given a polymorphic
type for the first time by this compiler. This compiler was reported in the ACM TOPLAS article on
record polymorphism [9] as SML#.

To support not only record polymorphism but also inseparability and other practically important
features, we decided to develop a new SML-style language from scratch, and in 2003, we started the
SML# compiler project at Japan Advanced Institute of Science and Technology as a part of the e-
Society project (http://www.tkl.iis.u-tokyo.ac.jp/e-society/index.html) funded by the Japan
ministry of science, education and technologies

In 2006, the project moved to Tohoku University.

3.3 SML# Development Team and Contact Information

At present (2021-04-06), SML# is being developed by

• Atsushi Ohori（RIEC, Tohoku University）

• Katsuhiro Ueno （RIEC, Tohoku University）

with help of graduate students.
The past SML# development team members include (with the affiliation at the time of development):

• Atsushi Ohori (School of Information Science, JAIST; RIEC, Tohoku University)

• Kiyoshi Yamatodani (Sanpukoubou Inc)

• Nguyen Huu Duc (School of Information Science, JAIST; RIEC, Tohoku University)

• Liu Bochao (School of Information Science, JAIST; RIEC, Tohoku University)

• Satoshi Osaka (School of Information Science, JAIST)

• Katsuhiro Ueno (School of Information Science, JAIST; RIEC, Tohoku University)

Contact information regarding SML#:

• SML# home page: https://smlsharp.github.io/

• SML# forum: https://github.com/smlsharp/forum/discussions

This board is for general discussion on SML#. To post a message, you need to have a GitHub
account. All the messages are made available on the Web.

• SML# twitter account: @smlsharp

We tweet the latest information about SML# on this account.

Send your questions, requests, and comments to the development team.

3.4 Acknowledgments

From its start in 2003, we have benefited from many peoples and organizations.

3.4.1 Project funding

SML# development was started as a part of the 5 year project“e-Society leading project: highly produc-
tive reliable software development technologies (Project Director: Professor Takuya Katayama)” under
the title “ reliable software development technology based on automatic program analysis (chief inves-
tigator: Atsushi Ohori) ”（http://www.tkl.iis.u-tokyo.ac.jp/e-society/index.html）sponsored
by the Japan ministry of science, education and technologies.

3.4. ACKNOWLEDGMENTS 11

3.4.2 Third-party code and software tool used in SML# development

Since the version 1.0 had completed, SML# has been developed by the SML# compiler itself. Before that,
we had used Standard ML of New Jersey for development and MLTon compiler for building distributions.

The SML# compiler is a software developed by the SML# development team (3.3). We have wrote
most of the code of SML# compiler from scratch, except for the following codes:

contents location in SML# distribution source code
ML-Yacc src/ml-yacc Standard ML of New Jersey 110.73
ML-Lex src/ml-lex Standard ML of New Jersey 110.73

SML/NJ Library src/smlnj-lib Standard ML of New Jersey 110.73
TextIO, BinIO, OS, Date, Timer structures src/smlnj Standard ML of New Jersey 110.73
floating point-string conversion (dtoa.c) src/runtime/netlib the Netlib

All of the above are open-source software that are compatible with SML# license. The SML# source
distribution includes the license of each of them at the “location in SML# distribution” show above.

3.4.3 Collaborators

Many people have contributed to research and development of SML#. In addition to the development
team (Section 3.3), the following people directly contributed to SML# research.

• Isao Sasano. With Atsushi Ohori, he investigated “Lightweight fusion by fixed point promotion”
and developed an experimental inlining module that performs lightweight fusion. This feature is
experimental and has not yet been integrated in SML# compiler, but we plan to adopt this method
in a future version.

• Toshihiko Otomo．With Atsushi Ohori and Katsuhiro Ueno, he investigated the possibility of non-
moving collector and showed an initial experimental result indicating that a non-moving GC is
viable in functional languages.

Many other people helped us through collaborative research with Atsushi Ohori and others to develop
type-theory and compilation methods that underlie SML# compiler. SML# compiler is directly based
on the following research results, some of them were collaboratively done.

• record polymorphism [8, 9]．

• database type inference [10]．

• database language (Machiavelli)[11, 1]．

• rank-1 polymorphism [15]．

• unboxed semantics of ML [13]．

• natural data representation for ML [7]．

• lightweight fusion [12].

• efficient non-moving GC[16]．

• implementation method for SQL integration[14]．

• JSON support[17]．

• fully concurrent GC[18]．

We have also benefited from many other researchers from 1989. We refrain from compiling a compre-
hensive list, which seems to be impossible.

12 CHAPTER 3. OVERVIEW OF SML#

3.5 Limitations in SML# version 4.0.0

We have successfully developed all the features listed in Section 3.1, which include all the features that
we had initially aimed at. The version 4.0.0 contains most of them, with the following restrictions.

1. Target Architecture.

The current compiler only generates x86-64 code.

2. Optimization.

In this version, optimization is far from adequate; it does not even implement standard ones such
as inlining and constant propagation. So both the compilation time and the speed of generated
code are not very satisfactory. We have started design and development of optimizing SML#
compiler, and hope that we will provide an optimized SML# compiler that is as fast as other
mature compilers.

Chapter 4

SML# License

The MIT Licence
Copyright (c) 2021 The SML# Development Team
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the ”Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

13

Part II

Tutorials

15

Chapter 5

Installing SML#

5.1 Prerequisites

The part II provides tutorials to get started writing SML# programs. Let us begin by installing the
SML# compiler and setting up a programming environment.

The SML# version 4.0.0 works on one of the following platforms.

• Linux (amd64 (x86 64))

• macOS (10.15 or later is recommended)

• Windows 10 (Windows Subsystem for Linux)

SML# compiler requires the following software.

• MassiveThreads 1.00

• GNU Multiple Precision Arithmetic (GMP) library

• LLVM 3.9.1 or above (LLVM 11.1.0 is recommended; the latest one available is preferrable)

MassiveThreads is a free software distributed under a BSD-style license. GMP is a free software dis-
tributed under LGPL（GNU Lesser General Public License). Yajl is a free software distributed under a
variant of ISC license. LLVM is a open-source software distributed under Apache license version 2 with
some exceptions.

LLVM version must be in version 3.9.1 or above. The latest LLVM available in your system is
preferable. We confirmed that SML# works with up to LLVM 11.1.0. Compliing SML# with LLVM
3.8 or below shall fail.

All of these libraries and commands are required not only to build SML# but also to run the SML#
compiler command and SML# programs. Note the following:

• These libraries and commands are used to build SML#. The MassiveThreads and GMP libraries
are liniked into the SML# compiler command. Libraries of LLVM is not linked into the SML#
compiler.

• After installation, the SML# compiler command uses opt, llc, llvm-as, and llvm-dis command
for code generation.

• The executable file of any user program compiled by the SML# compiler is linked with the Mas-
siveThreads and GMP library, even if the program does not use the features of these libraries at
all. We plan to fix this in upcoming releases.

Since these libraries and commands are not included in the SML# distribution package, you need
to install them before installing SML#. In most cases, these can be easily installed by the package
management system you use.

Below, we show the details of SML# installation steps for each of the supported operating systems.

17

18 CHAPTER 5. INSTALLING SML#

5.2 Debian GNU/Linux

Private repositories of SML# are provided for the latest stable version (when SML# is released) of
Debian GNU/Linux and Debian sid. Add one of these repositories to your system, and you can install
and update SML# by apt command.

Do the following commmands to set up the SML# compiler.

• Debian sid:

wget -P /usr/share/keyrings https://github.com/smlsharp/repos/raw/main/debian/dists/sid/smlsharp-archive-keyring.gpg

wget -P /etc/apt/sources.list.d https://github.com/smlsharp/repos/raw/main/debian/dists/sid/smlsharp.list

apt update

apt install smlsharp

• Debian 10 (buster):

wget -P /usr/share/keyrings https://github.com/smlsharp/repos/raw/main/debian/dists/buster/smlsharp-archive-keyring.gpg

wget -P /etc/apt/sources.list.d https://github.com/smlsharp/repos/raw/main/debian/dists/buster/smlsharp.list

apt update

apt install smlsharp

We show some more details of installation below (for sid).

1. Download the public key of the SML# development team and put it to the specified position in
the system.

wget -P /usr/share/keyrings https://github.com/smlsharp/repos/raw/main/debian/dists/sid/smlsharp-archive-keyring.gpg

You can check the fingerprint of the key by the following command:

gpg --with-fingerprint /usr/share/keyrings/smlsharp-archive-keyring.gpg

Confirm that the fingerprint of the downloaded key is identical to the above fingerprint (those who
would like to verify the public key strictly should meet a developer of the SML# compiler and
receive the fingerprint of the key). The fingerprint of the key is the following:

DD99 2B50 C9A3 B075 DA04 613A D299 F71F C5C1 D12E

2. Download the description file of the private repository and add it to the system.

wget -P /etc/apt/sources.list.d https://github.com/smlsharp/repos/raw/main/debian/dists/sid/smlsharp.list

3. Obtain the package list from the repository.

apt update

4. Install the SML# compiler. Prerequisite libraries, such as LLVM and MassiveThreads, are installed
if needed. SML# tools, such as SMLFormat, are also installed as recommended packages.

apt install smlsharp

5.3 Ubuntu

Private repositories are provided for the latest release and latest TLS release (when SML# is released)
of Ubuntu through PPA (Personal Package Archives for Ubuntu). Add one of these repositories to your
system, and you can install and update the SML# compiler by the apt command.

Do the following commmands to set up the SML# compiler.

• Ubuntu 20.10 LTS (Groovy):

add-apt-repository ppa:smlsharp/ppa

apt update

apt install smlsharp

5.4. FEDORA 19

• Ubuntu 20.04 LTS (Focal):

add-apt-repository ppa:smlsharp/ppa

apt update

apt install smlsharp

add-apt-repository adds the private repository to the system. The apt commands are similar to
those for Debian. See Section 5.2 for details.

5.4 Fedora

Private repositories of SML# are provided for the latest version (when SML# is released) of Fedora and
Fedora Rawhide. Add one of these repositories to your system, and you can install and update SML#
by dnf command.

Do the following commands to set up the SML# compiler.

• Fedora:

rpm -i https://github.com/smlsharp/repos/raw/main/fedora/smlsharp-release-fedora-31-0.noarch.rpm

dnf install smlsharp smlsharp-smlformat smlsharp-smllex smlsharp-smlyacc

• Fedora Rawhide:

rpm -i https://github.com/smlsharp/repos/raw/main/fedora/smlsharp-release-rawhide-31-0.noarch.rpm

dnf install smlsharp smlsharp-smlformat smlsharp-smllex smlsharp-smlyacc

We show some more details of installation below (for Rawhide).

1. Download and install the RPM package that includes the public key of the SML# development
team and configuration file of the private repository.

rpm -i https://github.com/smlsharp/repos/raw/main/fedora/smlsharp-release-fedora-31-0.noarch.rpm

2. Install the SML# compiler and its related tools.

dnf install smlsharp smlsharp-smlformat smlsharp-smllex smlsharp-smlyacc

In the middle of dnf command execution, the command asks you several times for importing
SML#’s public key. Check the fingerprint of the key and permit to import it. The fingerprint is
given as follows:

DD99 2B50 C9A3 B075 DA04 613A D299 F71F C5C1 D12E

5.5 CentOS

Private repositories of SML# are provided for CentOS 7 and CentOS 8. Add one of these repositoriers
to your system, and you can install and update SML# by yum or dnf command.

Do the following commmands to set up the SML# compiler.

• CentOS 8:

rpm -i https://github.com/smlsharp/repos/raw/main/centos/smlsharp-release-centos-8-0.noarch.rpm

dnf install smlsharp smlsharp-smlformat smlsharp-smllex smlsharp-smlyacc

• CentOS 7:

yum install epel-release

rpm -i https://github.com/smlsharp/repos/raw/main/centos/smlsharp-release-centos-7-0.noarch.rpm

yum install smlsharp smlsharp-smlformat smlsharp-smllex smlsharp-smlyacc

The commands are similar to those for Fedora except for the following points.

• On CentOS 7, the epel-release package must be installed prior to installing SML#.

See Section 5.4 for details of other commands.

20 CHAPTER 5. INSTALLING SML#

5.6 macOS

We prepare a Homebrew formula for SML#. After setting up Homebrew, invoke the following commands
in order to install SML# and its dependent libraries.

brew tap smlsharp/smlsharp

brew install smlsharp

We show some more details below.

1. Consult http://brew.sh/ and set up Homebrew.

2. Tap the git repository provided by the SML# development team so that the SML#-related
pacakges are added to the Homebrew system.

brew tap smlsharp/smlsharp

This repository includes the formulae (packages) and bottles (binary packages) of the MassiveThread
library and SML# compiler. Bottles are provided only for the latest version of macOS when SML#
is released. For validity of packages, each commit in this repository is signed by the private key
of the SML# development team. To verify the signature, fetch the public key of the SML#
development team from the following URL or some PGP public key servers:

https://github.com/smlsharp/repos/raw/main/debian/dists/sid/smlsharp-archive-keyring.gpg

The fingerprint of the key is the following:

DD99 2B50 C9A3 B075 DA04 613A D299 F71F C5C1 D12E

3. Install the SML# compiler by the following command.

brew install smlsharp

Prerequisite libraries, such as LLVM and MassiveThreads, are also automatically installed. If you
use macOS for which the bottles are not provided, MassiveThreads and SML# are built from
source and therefore the command takes a long time.

5.7 Windows 10

By setting up Windows Subsystems for Linux and Ubuntu, you can install the SML#’s .deb package
for Ubuntu in Windows.

See Microsoft’s documents for setting up Windows Subsystems for Linux. After bash command
becomes available, install SML# in the same installation steps as Ubuntu (see Section 5.3 for details).

5.8 Building from the source

For Linux and other systems, you need to build from the SML# source distribution. To do this, the
following tools and libraries are required:

1. GNU binutils（GNU Binary Utilities),

2. C and C++ compiler (gcc or clang),

3. make (GNU make is recommended),

4. MassiveThreads and GMP library and their header files, and

5. LLVM 3.9.1 (or above) library, its header files, and commands

If these have been already installed, you can build and install SML# in the following popular three steps:
./configure && make && make install.

If your OS does not provide them, you need to build them from the source. See those official
documents for details of this procedure.

For your information, we roughly present how to compile MassiveThreads and LLVM 11.1.0 the time
when we write this document.

5.8. BUILDING FROM THE SOURCE 21

MassiveThreads Obtain the source code of MassiveThreads 1.00 named massivethreads-1.00.tar.gz
from MassiveThreads web site https://github.com/massivethreads/massivethreads. After expand-
ing the tar archive, do ./configure && make && make install.

LLVM 11.1.0 Obtain the source code of LLVM 11.1.0 named llvm-11.1.0.tar.xz from LLVM web
site http://llvm.org/. After expanding the tar archive, do the following five commands:

mkdir build

cd build

cmake -G "Unix Makefiles" \

-DCMAKE_INSTALL_PREFIX=/where/llvm/is \

-DCMAKE_BUILD_TYPE=Release \

-DLLVM_BUILD_LLVM_DYLIB=On \

-DLLVM_ENABLE_BINDINGS=Off

make

make install

The above options specified to configure are optional but suggested. -DCMAKE INSTALL PREFIX option
should be specified to avoid conflict with other installation of LLVM. -DCMAKE BUILD TYPE=Release

option enforces compiling LLVM libraries by an optimizing compiler. -DLLVM BUILD LLVM DYLIB=On

option enforces building the LLVM shared library. -DLLVM ENABLE BINDINGS=Off option avoids to build
modules unnecessary for SML#.

With these preparation, SML# can be build in the following steps.

1. Download the source distribution from: https://github.com/smlsharp/smlsharp/releases/

download/v4.0.0/smlsharp-4.0.0.tar.gz. The latest version of the source package is also avail-
able from https://smlsharp.github.io/ja/downloads/.

2. Select an SML# source directory and extract the tar archive there. Note for non-English users:
the source directory must not include non-ASCII characters, otherwise the build process will fail.

3. Select an SML# installation destination directory. Let prefix be the path to the directory.

4. In the SML# source directory, execute configure script.

$./configure --prefix=prefix --with-llvm=/where/llvm/is

You can specify --prefix=prefix option to specify the destination directory. If --prefix option is
omitted, /usr/local is used as the destination directory. If --with-llvm option is omitted, the
configure script searches for LLVM libraries and commands from the standard directories such
as /usr/bin.

5. Do make command.

$ make

After make is finished, you can launch the SML# compiler without installing it by the following
commands.

$ src/compiler/smlsharp -Bsrc

6. (Optional) The following commands build the SML# compiler by the SML# compiler you built
in the previous step.

$ make stage

$ make

7. Do make install command.

$ make install

If you want to put files to be installed in a directory prefix ′ different from prefix , specify DESTDIR=prefix ′

option to make install command.

22 CHAPTER 5. INSTALLING SML#

The following files are installed by the above procedure.

1. smlsharp command at prefix/bin/smlsharp

2. smlformat command at prefix/bin/smlformat

3. smllex command at prefix/bin/smllex

4. smlyacc command at prefix/bin/smlyacc

5. library files in the prefix/lib/smlsharp/ directory.

If successful, you can invoke SML# by typing:

$ prefix/bin/smlsharp

Some hints:

• This process compiles all the source files including those of tools, which takes some time．If you
have a CPU with n cores and use GNU make, then try to give -jm (m ≤ n) switch to make

command for parallel processing, where m indicate the degree of parallelism.

Chapter 6

Setting up SML# programming
environment

6.1 Unix-family OS，Emacs，and other tools

To enjoy writing programs, you need to set up a programming environment including

• a good text editor, and

• a compiler and a linker.

The environment required for SML# programming is essentially the same as in any other programming,
except of course for the SML# compiler. In Java and other languages, an integrated development
environment such as Eclipse is often used, but for SML# programming, we recommend the following
standard system development environments.

• OS in the Unix family. A Unix-family OS such as Linux, FreeBSD (including Mac OS) provides
a rich collection of programming tools. This would be your first choice. It is easy to set up Linux
on Windows using a virtual machine such as VMWare.

reasonable alternative.

• Emacs editor. This is one of the best editor for programming, which is a repeated process of
editing an ASCII text file and and compiling it. In most of the time, you are interacting with your
text editor. So choosing a highly custormisable high-performance editor is important. Among var-
ious choices, we recommend one in the Emacs-family (GNU Emacs, XEmacs). Emacs is a powerful
custormisable text editor, and it can also perform command execution and file system management.
It requires some practice at the beginnings, but once you mastered its basic functionality, it will
become a powerful tool in programming.

• C compiler. SML# compiler generates x86 64 native code, creates an object file in a standard
format (e.g. ELF), and generates an executable code by linking object files with C libraries. In
this process, it calls C compiler driver command such as gcc or clang. One of them should already
be installed in a Unix-family OS.

If your purpose is to make a small program entirely within SML#, then you will not need to
invoke a C compiler directly. However, if you want to make a practical program, you may want
to call some system library functions or you may write some part of your system in C and call
that function from your ML code. This is straightforward in SML#. To exploit this feature, we
recommend that you familiarize yourself with C compiler.

• database systems. SML# seamlessly integrates SQL. SML# version 4.0.0 supports PostgreSQL,
MySQL, ODBC, and SQLite3. If you set up one of them, then you can use a database system
directly within your SML# code.

23

24 CHAPTER 6. SETTING UP SML# PROGRAMMING ENVIRONMENT

6.2 Bootstrapping the SML# compiler

This section outlines the structure of SML# compiler and the method to building (bootstrapping) it.
You do not have to understand this section for installing and using SML# compiler, but you may find this
section informative in understanding various messages during compilation of SML# and also a structure
of a compiler in general.

SML# system consists of a single compiler that performs separate compilation. Its interactive mode
is realized by the top-level-loop performing the following steps:

1. compile the user input using the current static environment as its interface,

2. link the object file with the current system to generate a shared executable file,

3. dynamically load the shared executable in the current system, and call its entry point.

SML# is written in SML#, C, and C++. In addition, it uses the following tools during compiling
the SML# compiler.

• ml-lex，ml-yacc: a lexical analyzer generator and a parser generator.

• SMLFormat: a printer generator.

• The Standard ML Basis Library.

All of them are written in Standard ML.
SML# compiler compiles each SML# (which is a super set of Standard ML) source file (source.sml)

into a system standard object file (sample.o). To generate an executable file, the compiled files are then
linked by the standard linker (ld in Unix-family OS) invoked through C/C++ compiler driver command
(gcc or clang). So, in order to build the SML# compiler, it is sufficient to have a C/C++ compiler
and an SML# compiler. But of course, at the time when the SML# compiler is first built, an SML#
compiler is not available. The standard step of solving this bootstrap problem is the following.

1. Compile SML# runtime library written in C/C++ and archive it as a static link library.

2. Obtain a pre-compiled LLVM IR source file of a minimal SML# compiler minismlsharp that is
sufficient for compiling all the source files used in the SML# compiler. The pre-compiled files are
typically generated by an older version of SML# compiler.

3. In the system where the target SML# compiler is installed, assemble the minismlsharp LLVM IR
file, link them with the runtime library, and create a minismlsharp command.

4. By using this minismlsharp command, compile all of the tools and libraries, and the full-featured
SML# compiler. This procedure is roughly performed as follows.

(a) Compile the Basis Library.

(b) Compile and link smllex command.

(c) Compile and link ML-yacc library and smlyacc command.

(d) Generate parser source code by smllex and smlyacc command.

(e) Compile and link smlformat command.

(f) Generate printer source code by smlformat command.

(g) Compile all of the libraries bundled to the SML# distribution.

(h) Compile and link smlsharp command.

5. The following files are installed to specified destination directories.

• The static link library of the runtime library.

• Interface files, object files, and signature files of the libraries bundled to the SML# distribu-
tion.

• smllex, smlyacc, smlformat, smlsharp command.

6.3. LET’S TRY SML# INTERACTIVE MODE 25

As outlined above, there are complex dependencies among source files and commands. Furthermore,
processing some of these files depend on the underlying OS. This is a typical situation in a large system
development. One well established method to solve these dependency problems is to use configure

script generated by GNU Autoconf and make command.
SML# compiler compiles each source file according to its interface file, which describes the set of

files require by the source file. SML# compiler can also generate a list of files on which each source file
depends in the Makefile format that can be processed by make command. SML# compiler does this
task, when it is given one of the following switch.

1. smlsharp -MM smlFile. The compiler generates the dependency for the source file smlFile to be
compiled in the Makefile format.

2. smlsharp -MMl smiFile. The compiler assumes that the file smiFile specifies the top level system,
and generates the list of necessary object files in the Makefile format.

3. smlsharp -MMm smiFile. The compiler assumes that the file smiFile specifies the top level system,
and generates a Makefile that builds the executable file of the entire program.

In the SML# project, we make a Makefile that performs the above described complicated sequence
of compilation and linking steps using the above functionality of SML#. Invoking make command on
Makefile re-compiles only the necessary files to build SML# compiler.

6.3 Let’s try SML# interactive mode

Include the SML# installation directory in your command load path, so that you can run SML# by the
name smlsharp. When invoked without any parameter, SML# stars its interactive session by printing
the following message and waits for your input.

$ smlsharp

SML# version 4.0.0 (2021-04-06) for x86_64-pc-linux-gnu with LLVM 11.1.0

#

The “# ” character is the prompt SML# prints. In this document, we write “$ ” for the shell prompt.
After this message, the compiler repeats the following steps.

1. Read the user input up to “;”.

2. Compile the input program and execute it.

3. Print the result.

The following is a simple example.

"Hello world";

val it = "Hello world" : string

The first line is the user input. The second line is the response of SML# system. As seen in this example,
the compiler prints the result value with its type, and binds it to a name for subsequent use. If the user
does not specify the name, the compiler uses “it” as the default name.

6.4 Let’s try SML# compile mode

The main function of SML# compiler is to compile a file and to create an executable program, just like
gcc.

As a simple example, let us write the previous user input # "Hello world"; into a file hello1.sml:

"Hello world";

The trailing semicolon does not have any effect in a file. This file can be compiled as follows.

26 CHAPTER 6. SETTING UP SML# PROGRAMMING ENVIRONMENT

$ smlsharp hello1.sml

$ file a.out

a.out: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,

interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=43a2c24d3728ad6a35262f6f386317a2fda1ba78,

not stripped

$

When only a file name is given, SML# compiles the file, link it and creates an executable file, whose
default name is a.out. As shown by the Linux file command, it is an ordinary executable file. The
output file name can be specified by a -o switch.

$ smlsharp -o hello1 hello1.sml

$ ls hello1*

hello1 hello1.sml

$

The generated executable file can then be executed.

$./hello1

$

Nothing is printed by this program. This is what you expect. SML# compiles the source code itself; it
does not attach code to print the result value and its type. If you want to see something printed, you
need to write code to print it explicitly. Now let’s create a file hello2.sml to print this message. The
contents can be the following.

print "hello world!\n"

This file contains a function print which is not defined in this file. Our intention is that print denotes
the function print : string -> unit in Standard ML Basis Library. However, since name print can
be freely re-defined, for SML# compiler, it does not necessarily mean the library function. In order to
compile hello2.sml, you need to notify the compiler where the name print is defined. For this purpose,
an interface file must be created.

When compiling hello2.sml, SML# searches for its interface file by its default name hello2.smi.
So to compile hello2.sml, you need to create file hello2.smi. Its contents can be the following.

_require "basis.smi"

This declares that hello2.sml uses names that are defined in the interface file "basis.smi", which is
the system supplied file containing the declarations of all the names defined in the Standard ML Basis
Library.

With this preparation, hello2.sml is compiled as follows.

$ smlsharp hello.sml -o hello

$./hello

hello world!

6.5 smlsharp command modes

smlsharp has the following execution modes.

interactive mode When smlsharp is invoked without any parameter, it executes the interactive ses-
sion.

compile and link mode When smlsharp is invoked with a single source file as shown below:

$ smlsharp ⟨file⟩ .sml
$

it compiles the source file ⟨file⟩ .sml, links the resulting object file and creates an executable
program (with the name a.out by default).

compile mode When smlsharp is invoked with -c switch as shown below:

6.5. SMLSHARP COMMAND MODES 27

$ smlsharp -c ⟨file1⟩ .sml · · · ⟨fileN⟩ .sml
$

it compiles the given files ⟨file1⟩ .sml · · · ⟨fileN⟩ .sml into object files ⟨file1⟩ .o · · · ⟨fileN⟩ .o.

link mode When smlsharp is invoked with a single interface files as shown below:

$ smlsharp ⟨file⟩ .smi
$

it assumes that ⟨file⟩ .smi is a top-level interface file, links all the object files corresponding to the
interface files referenced from ⟨file⟩ .smi, and generates an executable file.

SML# also recognizes various command-line switches.

$ smlsharp --help

will print a help message describing available switches.

Chapter 7

Introduction to ML programming

The SML# language is a super set of Standard ML. To write a program in SML# exploiting its advanced
features, you must first learn Standard ML programming. This chapter provides ML programming
tutorial for those who first learn ML programming.

7.1 About the ML language family

SML# is a programming language in the ML family.
ML was first developed as a Mmeta Language of Edinburgh LCF[3] system. The prefix meta in this

particular usage probably traces back to Greek phrase “ta meta ta phusika”, which simply denotes the
book placed after the phusika (Physics, or the book on the nature). The denoted book happens to be
on philosophy (metaphysics), which made this prefix receive a meaning of the (philosophical) attitude of
analyzing things beyond the ordinary way of thinking. In the context of languages, a meta language is a
language used to analyze the ordinary usage (writing/reading/speaking) of a language. Objects of LCF
system are computable functions (programs) represented by a language called PPLAMBDA. LCF ML
was the meta language of PPLAMBDA, namely, a programming language to manipulate PPLAMBDA
expressions (functions).

ML’s name as well as its features are originated from this historical role of LCF ML. For flexible
manipulation of programs, LCF ML itself was defined as a functional language. In addition, a type
inference system was introduced for reliable manipulation of function terms. Since the success of LCF
ML, ML has evolved as a general purpose programming language, and several compilers have been
developed for ML. Based on these efforts, its specification is formally defined as Standard ML [5, 6].

7.2 Declarative programming

Functional programming is sometimes described as “declarative programming”. This is not a precise
technical term. It somewhat vaguely suggests that programs naturally and directly express what they
should realize. If the problem to be solved is procedural in nature then a procedural description may
well be declarative. However, when the thing to be represented by a program has a well defined meaning,
then declarative programming has more precise meaning.

When a program to be written is best understood as a function that takes an input and returns a
result, then functional programming would be naturally declarative. As a simple example, consider the
factorial function. The factorial of n, n!, is defined by the following mathematical equations.

0! = 1

n! = n× (n− 1)!

In ML, it is coded below.

fun fact 0 = 1

| fact n = n * fact (n - 1)

This declaration defines a function named fact. It consists of two cases separated by “|”. The first case
says fact returns 1 if the parameter is 0, and the second case says it otherwise returns the multiple of

29

30 CHAPTER 7. INTRODUCTION TO ML PROGRAMMING

n and the factorial of n - 1. These two cases exactly correspond to the mathematical definition of this
function.

Various programs other than such a very simple mathematical function can be written in a concise and
readable fashion if you can represent them as declarative functions according to the intended meaning.
ML is a programming language that promotes this way of declarative programming. A key to master
ML programming is to obtain a skill of writing declarative code in this sense. In the subsequent sections,
we learn the essence of ML programming.

7.3 Representing computation by composing expressions

In the factorial example, the program returns 1 if the parameter is 0，and returns n * fact (n - 1)

otherwise. In this way, the value returned by a function is represented by an expression. 1 in the first
case is an expression representing the natural number 1. n * fact (n - 1) is an expression involving
variable n and function application. The basic principle of ML programming is

programming is done by defining an expression that represents the desired value.

An expression consist of the following components:

1. constants such as 1,

2. variables representing function parameters and defined values.

3. function applications (function calls), and

4. functions and other data structure constructions

The items 1 through 3 are the same as in mathematical expressions, we have leaned in school. For
example, the sum of the arithmetic sequence Sn = 12 + 22 + · · ·+ n2 is given by the following equation.

Sn =
n(n+ 1)(2n+ 1)

6

This is directly programmed as follows.

val Sn = (n * (n + 1) * (2 * n + 1)) div 6

* and div are integer multiplication and division, respectively. When n is defined, it correctly computes
Sn as seen below.

val n = 10;

val n = 10 : int

val Sn = (n * (n + 1) * (2 * n + 1)) div 6;

val Sn = 385 : int

7.4 Constants literals and built-in primitives

SML# contains the following atomic types, with the associated literal constants.

type its values
int signed integers (of one machine word size)
real double precision floating point numbers
char characters
string character strings
word unsigned integers (of one machine word size)
bool boolean values

We review basis expressions for these atomic types, except for bool which will be treated in the next
section.

7.4. CONSTANTS LITERALS AND BUILT-IN PRIMITIVES 31

7.4.1 int type

This is a standard type of integers. In SML#, a value of int is a two’s compliment integer and is
the same as long in C. Constants of int are written either the usual decimal notation or hexadecimal
notation of the form 0x ⟨h⟩ where ⟨h⟩ is a sequence of digits from 0 to 9 and letters from a(or A) to f(or
F). A negative constant is written with ~. SML# prints int values in decimal notation.

10;

val it = 10 : int

0xA;

val it = 10 : int

~0xFF;

val it = ~255 : int

Binary arithmetic operations +, -, *, div are defined on int.

10 + 0xA;

val it = 20 : int

0 - 0xA;

val it = ~10 : int

10 div 2;

val it = 5 : int

10 * 2;

val it = 20 : int

As in arithmetic expressions in mathematics, *,div associate stronger than +, -, and operators of the
same strength are computed from left to right.

1 + 2 * 3;

val it = 7 : int

4 - 3 - 2;

val it = ~1 : int

7.4.2 real type

real is a type of floating point data. In SML#, a value of real is a 64 bit double precision floating
point numbers and is the same as double in C. real constants are written in the notation ⟨s⟩ . ⟨d⟩ E ⟨s⟩ ,
where ⟨s⟩ is a decimal string possibly with the negation symbol and ⟨d⟩ is a decimal string. Each of
the three parts can be omitted, but decimal string is interpreted as a value of int.

10.0;

val it = 10.0 : real

1E2;

val it = 100.0 : real

0.001;

val it = 0.001 : real

~1E~2;

val it = ~0.01 : real

10;

val it = 10 : int

Binary arithmetic operators +, -, *, / are defined for real. Note that the division operator on real

is / and not div.

10.0 + 1E1;

val it = 20.0 : real

0.0 - 10.0;

val it = ~10.0 : real

10.0 / 2.0;

val it = 5.0 : real

10.0 * 2.0;

val it = 20.0 : real

32 CHAPTER 7. INTRODUCTION TO ML PROGRAMMING

7.4.3 char type

char is a type for one character data. A constant for a character ⟨c⟩ is written as #" ⟨c⟩ ". ⟨c⟩ may be
any printable character or one of the following special escape sequences.

\a warning (ASCII 7)
\b backspace (ASCII 8)
\t horizontal tab(ASCII 9)
\n new line (ASCII 10)
\v vertical tab (ASCII 11)
\f home feed (ASCII 12)
\r carriage return(ASCII 13)
\^C control character C
\" character "
\\ character \
\ddd the character whose code is ddd in decimal

#"a";

val it = #"a" : char

#"\n";

val it = #"\n" : char

The following primitive functions are defined on char.

val chr : int -> char

val ord : char -> int

chr n assumes that n is an ASCII code and returns the character of that code. ord c returns the ASCII
code of c.

ord #"a";

val it = 97 : int

chr(97 + 7);

val it = #"h" : char

ord #"a" - ord #"A";

val it = 32 : int

chr(ord #"H" + 32);

val it = #"h" : char

7.4.4 string type

string is a type for character strings. string constants are written with " and ". A string constant
may contain escape sequences shown above. For string data, a print function print and a concatenation
binary operator ^ are defined.

"SML#" ^ "\n";

val it = "SML#\n" : string

print it;

SML#

val it = () : unit

7.4.5 word type

word is a type for unsigned integers. word constants are written as 0w ⟨d⟩ or 0wx ⟨h⟩ where ⟨d⟩ is a
decimal digit sequence and ⟨h⟩ is a hexadecimal digit sequence. SML# prints word data in a hexadecimal
notation.

0w10;

val it = 0wxa : word

0wxA;

val it = 0wxa : word

7.5. TYPE BOOL AND CONDITIONAL EXPRESSIONS 33

7.5 Type bool and conditional expressions

Following the ML principle,

programming is done by defining an expression that represents the desired value.

conditional computation is represented as an expression. A conditional expression

if E1 then E2 else E3

is an expression that computes a value in the following steps.

1. Evaluate E1 and obtain a value.

2. If the value is true then evaluate E2 and return its value.

3. If the value of E1 is false then evaluate E3 return its value.

true, false are two constants of type bool. Expressions of type bool contains comparison expressions
and logical operations.

1 < 2;

val it = true : bool

1 < 2 andalso 1 > 2;

val it = false : bool

1 < 2 orelse 1 > 2;

val it = true : bool

Conditional expressions are made up with expressions of type bool.

if 1 < 2 then 1 else 2;

val it = 1 : int

Since this is an expression, it can be combined with other expressions as show below.

(if 1 < 2 then 1 else 2) * 10;

val it = 10 : int

7.6 Compound expressions and function definitions

Of course, constant, variables and primitive functions are not sufficient for writing a program that solves
a complex problem. The important expressions in ML programming are those that represent functions.

As seen in an example in Section 7.2, a function is defined by the following syntax:

fun funName param = expr

After this declaration, the variable funName is bound to a function that takes param as its argument
and returns the result computed by expr. For example, the equation for an arithmetic sequence we have
seen before can be regarded as a function that takes a natural number n:

S(n) =
n(n+ 1)(2n+ 1)

6

This definition can be programmed directly using fun as follows.

fun S n = (n * (n + 1) * (2 * n + 1)) div 6;

val S = fn : int -> int

After this definition, S can be used as follows.

S 10;

val it = 385 : int

S 20;

val it = 2870 : int

34 CHAPTER 7. INTRODUCTION TO ML PROGRAMMING

7.7 Recursive functions

The fun syntax allows recursive function definitions. The function name funName being defined in this
declaration can be used in the defining body expr of this declaration.

A recursive function can naturally be designed in the following step.

1. Presume the expected behavior of the function funName for all the cases, and assume that such
function exists.

2. For each case of the parameter param, write the expr using param and funName for that case.

For example，function fact shown in Section 7.2 is designed in the following steps.

1. Assume that you have the function fact that correctly computes the factorial of any non-negative
number.

2. Using fact, write down the body of each case as follows.

(a) If the parameter is 0, then since 0! = 1, the expr is 1,

(b) otherwise, from the definition of the factorial function, the expr is n * fact(n - 1).

This yields the following recursive function definition.

fun fact 0 = 1

> | fact n = n * fact (n - 1);

val fact = fn : int -> int

The summation function sum and exponentiation function power, for example, can similarly be written
by presuming that these functions were already given.

fun sum 0 = 0

| sum n = n + sum (n - 1)

fun power 0 = 1

| power n = c * power (n - 1)

Under the presumed behavior of sum and power, each case correctly computes the expected value, and
therefore the entire definitions are correct.

This is a recursive way of reasoning. Think in this recursive way, and you can naturally write various
recursive functions.

7.8 Functions with multiple arguments

The function power defined in the previous section computers the power Cn of C for a given C. There
are two ways of generalizing this function so that it takes both n and C and return Cn. They are shown
in the following interactive session.

fun powerUncurry (0, C) = 1

> | powerUncurry (n, C) = C * powerUncurry (n - 1, C);

val powerUncurry = fn : int * int -> int

powerUncurry (2,3);

val it = 9 : int

fun powerCurry 0 C = 1

> | powerCurry n C = C * (powerCurry (n - 1) C);

val powerCurry = fn : int -> int -> int

powerCurry 2 3;

val it = 9 : int

The type int * int -> int of powerUncurry indicates that it is a function that takes a pair of integers
and returns an integer. In contrast, the type int -> int -> int of powerCurry says that it is a
function that takes an integer and returns a function of type int -> int. As seen in these example, in
ML, a function is defined in the format as it will be used. For example, powerUncurry is defined fun

powerUncurry (C,n) = ... so it is used as powerUncurry (2, 3).

7.9. FUNCTION APPLICATION SYNTAX 35

7.9 Function application syntax

powerUncurry is just like a C function taking a pair of arguments. Unlike C and other procedural
languages, ML also allows the programmer to write a function that takes multiple arguments in a
sequence like powerCurry. For proper understanding of this feature, let us review function application
syntax. In mathematics, function application is written as f(x), but in ML it is written as f x, simply
juxtaposing function and its argument.

Let expr be the expressions consisting of constants, variables and function applications. Its syntax
is given by the following grammar.

expr ::= c (constants)

| x (variables)

| expr expr (function application)

| · · ·

This grammar is ambiguous in the sequence of function applications. To understand this problem,
let us examine familiar arithmetic expressions. Suppose we introduce expr + expr, expr − expr, and
expr ∗expr for integer addition, subtraction and multiplication. Then we can write 10 - 6 - 2 but this
expression itself does not determine the order of subtractions. As a consequence, two different results are
possible: (10 - 6) - 2 = 2 or 10 - (6 - 2) = 4. As in elementary school arithmetic, ML interprets
this as (10 - 6) - 2 = 2. We say that the subtraction associates to the left or is left associative.
For anther example, ML interprets 10 + 6 * 2 as 10 + (6 * 2). We say that the multiplication *

associates stronger than addition +.

In ML and other lambda calculus based functional languages, there is the following important rule:

function application associates to the left and its associatibity is the strongest

e1 e2 e3 · · · en is interpreted as (· · · ((e1 e2) e3) · · · en). For example, powerCurry 2 3 is inter-
preted as ((powerCurry 2) 3).

7.10 Higher-order functions

As we learned that powerCurry 2 3 is interpreted as ((powerCurry 2) 3). This implies:

(powerCurry 2) is a function.

In ML, functions can be generated by a program. powerCurry is a program that takes an integer and
return a function. Generated functions can be named and passed to other functions. For example, one
can write the following code.

val square = powerCurry 2;

val square = fn : int -> int

square 3;

val it = 9 : int

fun apply f = f 3;

val apply = fn : [’a. (int -> ’a) -> ’a]

apply square;

val it = 9 : int

The type of apply means that this is a function that takes a function on integers and return an integer.

In summary, ML has the following power.

Just like integers, functions are values that can be returned from a function or passed to a
function. In particular, a function can take a function as a parameter.

This is the important principle of ML under the fundamental principle of ML programming saying that
programs are expressions. A function that takes a function as a parameter or return a function is called
a higher-order function.

36 CHAPTER 7. INTRODUCTION TO ML PROGRAMMING

7.11 Using higher-order functions

The key to writing a cool, i.e. readable and concise program efficiently is to understand the role of
higher-order functions and to compose expressions using higher-order functions. As in any programming
skill, mastering higher-order functions require certain amount of practice, and is beyond this tutorial.
However, there are few basic concepts that are important in writing expressions using higher-order
functions. This tutorial attempt to exhibit them. In what follows, we learn these concepts through
simple examples.

In high school mathematics, we have learned Σ notation. This notation satisfies the following equa-
tions.

0∑
k=1

f(k) = 0

n+1∑
k=1

f(k) = f(n) +

n∑
k=1

f(k)

The reason for learning this notation is because this notation represents a useful abstraction, i.e. summing
up a sequence of expressions with integer indexes. A brief analysis of the notation

∑n
k=1 f(k) reveals

the following.

• The notation contains 3 variables k, n, f . Among them, k is a variable that is only to indicate that
expressions are index by k = 1, . . . , n, and is not a real variable. The variables of this expression
are n and f .

• Expression
∑n

k=1 f(k) denotes the value f(1) + f(2) + · · · + f(n) for any given integer n and a
function f .∑

is a function that takes an integer n and a function f that takes an integer and returns an integer,
i.e. it is a higher-order function. In ML, this higher-order function is directly code as follows.

fun Sigma f 0 = 0

> | Sigma f n = f n + Sigma f (n - 1);

val Sigma = fn : (int -> int) -> int -> int

This Sigma can compute the summation of any inter function.

Sigma square 3;

val it = 14 : int

Sigma (powerCurry 3) 3;

val it = 36 : int

As demonstrated by this example, higher-order functions has the power of representing a useful
computation pattern by abstracting its components as argument functions. The key to writing a cool
ML code is to master the skill of abstracting useful computation patterns as higher-order functions.
Polymorphic typing we shall learn in Section 7.20 can be regarded as a mechanism to support this style
of programming. Higher-functions with their polymorphic typing enable the ML programmer to code a
complicated system in a concise and declarative way.

7.12 Imperative features of ML

ML is a language where programs are defined by composing expressions, and is suitable for declarative
programming. So far we have used numerical functions such as

∑
, but as pointed out in Section 7.2，

the intention of declarative programming is to write what the program should express directly as a code,
and not intend to define a program as a mathematical function.

If the actual problem is best expressed as a sequence of procedure, then directly writing done that
sequence would be most declarative. For example, displaying a sentence on the video display you are
looking at is the process to override the previous sentence with the new sequence of characters. In
an actual implementation, this is done by modifying the frame buffer of the video screen hardware.
This process is inherently procedural, and therefore best described as a process to update the buffer.

7.13. MUTABLE MEMORY REFERENCE TYPES 37

Input from and output to external world inevitably have this property. For those problems, procedural
representation would be most direct and therefore concise and readable, thus declarative.

Integrating imperative features in a functional language requires the following.

1. Introduction of updating a mutable state. In the previous display example, display contents can
be understood as the state of the display. The basis of imperative programming is to update states
to obtain the desired state. For this, the introduction of mutable data structures is required.

2. A predictable evaluation order. In the display example, the order of updates determine the image
and its motion in the display. To write a procedural program, it is necessary to control the order
of update operations.

ML introduces these two in a framework of functional programming.

7.13 Mutable memory reference types

ML has the following type constructor and primitives.

type ’a ref

val ref : ’a -> ’a ref

val ! : ’a ref -> ’a

val := : ’a ref * ’a -> unit

’a ref is a type of references (pointers) of type ’a. Function ref takes a value of type ’a and returns a
reference to it. Function ! takes a reference and returns the value of that reference. Function := assigns
a given value to a given reference. This destructively update the reference cell. The following shows an
interactive session manipulating a reference.

val x = ref 1;

val x = ref 1 : int ref

!x;

val it = 1 : int

x := 2;

val it = () : unit

!x;

val it = 2 : int

A function performing imperative operation can be written by maintaining a state using a reference.

7.14 Left-to-right applicative order evaluation

To write a program that manipulate states, it is necessary to fix the order of execution of each part of the
program. In a functional language, where a program is a composition of expression, program execution
corresponds to obtain the value of an expression. This process is called evaluation of an expression. In
ML, expressions are evaluated in the following order.

1. The same level sub-expressions are evaluated from left to right. For example, (power 2) (power

2 2) is evaluated by first evaluating (power 2) to obtain a function that computes power of 2 and
then (power 2 2) is evaluated to obtain 4, and finally the power 2 function is applied to 4 to yield
14.

2. A sequence of declarations are evaluated in the order of the declarations.

3. The body of a function is not evaluated until the function is applied to an argument.

ML also provide the following syntax to control evaluation order.

expr ::= · · ·
| (expr; · · · ;expr) （sequential evaluation）

38 CHAPTER 7. INTRODUCTION TO ML PROGRAMMING

(expr1; · · · ;exprn) is evaluated by evaluating expr1 through exprn sequentially, and yields the value
of the last expression exprn.

By manipulating reference types in the evaluation order, an imperative operation can be written as
a function. For example, a function that generate a new name by maintaining a mutable state is defined
as follows.

fun makeNewId () =

let

val cell = ref 0

fun newId () =

let

val id = !cell

in

(cell := id + 1; id)

end

in

newId

end

7.15 Procedural control

We have learned imperative (procedural) programming. At this point, let us review the relation between
control statements in a procedural language and functions.

Inherently procedural operations such as external IO are naturally expressed as procedural program-
ming. However, in a procedural language, control structures such as loops and conditionals are also
implemented using states. Since program structures are independent of imperative operation, represent-
ing them as expressions generally yield more declarative programs.

There is one thing to be noted however. In a procedural language like C, the factorial function may
be written as follows.

int fact (int n) {

int s = 1;

while (n > 0) {

s = s * n;

n = n - 1;

}

return s;

}

This is generally more efficient than a recursive function of the form

fun fact 0 = 1

| fact n = n * fact (n - 1)

This fact is however does not implies that functional programming is inherently inefficient.

7.16 Loop and tail recursion

The basis of designing a loop program are the following.

1. Design a state of computation that leads to the desired result.

2. Set up variables that hold the computation state, and the progress of computation.

3. Write a code to iteratively update the variables until the desired result is obtained.

A program that sums up 1 through n can be designed as follows.

• the state of computation: s = i ∗ (i+ 1) ∗ ... ∗ n(1 ≤ i ≤ n)

• variables：s, i

7.17. LET EXPRESSIONS 39

• update code: s := s+ 1; i := i− 1

This design yields the C function fact in Section 7.15.
This way of designing an iterative computation is not limited to procedural languages. A code to

update the current state can be understood as a function that takes the current state and generate the
next state. Then a loop program is represented a recursive function that takes the current state and
call itself with the generated next state. The loop code of the C function fact can be written as the
following ML code:

fun loop (0, s) = s

| loop (n, s) = loop (n - 1, s * n)

fun fact n = loop (n, 1)

This form of recursion is called tail recursion, which is evaluated efficiently.

7.17 let expressions

ML programming is done by defining an expression and giving a name to it for subsequent use. Examples
we have seen so far, names are all recorded at the top-level. However, a large program requires a large
number of names, many of which are only temporarily used. For example, fact function in the previous
section is defined using loop function, but this name loop is only used in fact; other function would
need another version of loop. Such a name should be defined as a local name to the function that use
the name. For this purpose, ML provide the following let expression.

expr ::= · · ·
| let decl list in expr end

decl ::= val x = expr

| fun f p1 · · · xn = expr

| · · ·

The declarations written between let and in are only visible to the code between in and end. A tail
recursive fact function is usually written as follows.

fun factorial n =

let

fun loop (s, 0) = s

| loop (s, i) = loop (s * i, i - 1)

in

loop (1, n)

end

7.18 List data type

Lists and the associated functions are commonly used data structures in ML. List processing programs
contain the following basic elements in ML programming.

• Recursively defined data.

• Pattern matching.

• Polymorphic functions

Let us lean these elements through list programming.
A list is a sequence of elements. In ML, a list of 1,2,3 is written as follows.

[1,2,3];

val it = [1, 2, 3] : int list

This notation is a shorthand for the following expression.

40 CHAPTER 7. INTRODUCTION TO ML PROGRAMMING

1 :: 2 :: 3 :: nil;

val it = [1, 2, 3] : int list

:: is a right-associative binary operator for constructing a list. So 1::2::3::nil is interpreted as
1::(2::(3::nil)). e :: L is the list obtained by pre-pending the element e to the list L. nil is the
empty list. int list is the list type whose component is type int.

7.19 Principle in composing expressions

The fundamental principle of ML programming to compose expressions, but of course not all compositions
yield meaningful programs. In ML, the principle of composing expressions is the following.

expressions are freely composed as far as they are type correct.

Let us consider this principle using lists as examples. List does not constrain its component types; any
values can be put into a list as far as their type is the same. The following interactive session shows
constructions of lists of various types.

fact 4 :: 4 + 4 :: (if factorial 1 = 0 then nil else [1,2,3]);

val it = [12, 24, 8] : int list

[1.1, Math.pi, Math.sqrt 2.0];

val it = [1.1, 3.14159265359, 1.41421356237] : real list

"I"::"became"::"fully"::"operational"::"on"::"April 2, 2012"::nil;

val it = ["I", "became", "fully", "operational", "on", "April 2, 2012"] : string

list

[factorial, fib];

val it = [fn, fn] : (int -> int) list

[#"S", #"M", #"L", #"#"];

val it = [#"S", #"M", #"L", #"#"] : char list

implode it;

val it = "SML#" : string

explode it;

val it = [#"S", #"M", #"L", #"#"] : char list

”implode” convert list of characters into a string and ”explode” does its converse.

7.20 Polymorphic functions

In order to exploit the principle that “expressions are freely composed as far as they are type consistent”,
primitive functions used to compose expressions should accept expressions of various types. The primitive
:: to construct a list has the following type.

op ::;

val it = fn : [’a. ’a * ’a list -> ’a list]

op prefix convert infix binary operator into a function that takes a pair. This typing indicates that :: is
a function that takes a value of type ’a and a value of type ’a list, which is a list type whose element
type is ’a, and returns a list of the same type. In this typing, ’a represents an arbitrary type. The
notation [’a.· · ·] indicates that ’a in · · · can be replaced with any type, and corresponds to universally
quantified formula ∀a. · · · in logic. These types that quantifies over type variables are called polymorphic
types, and functions having a polymorphic type are called polymorphic functions.

Functions defined by composing polymorphic functions are often polymorphic functions.

fun cons e L = e :: L;

val cons = fn : [’a. ’a -> ’a list -> ’a list]

In this way, ML compiler infers a most general polymorphic type for an expression. To understand
this mechanism, consider the following function.

fun twice f x = f (f x);

7.20. POLYMORPHIC FUNCTIONS 41

twice takes a function and an argument and apply the function to the argument twice. Since f is applied
to x, the type of x must be the same as the argument type of f. Moreover, since f is applied again to the
result of f, the result type of f must be the same as its argument type. The most general type satisfying
these constraint is the following.

[’a. (’a -> ’a) -> ’a -> ’a]

ML indeed infers the following typing for twice.

fun twice f x = f (f x);

val twice = fn : [’a. (’a -> ’a) -> ’a -> ’a]

ML’s principle in program construction – “expressions are composed as far as they are type consistent”
– is made possible by this polymorphic type inference mechanism. twice can be combined with any
function and a value as far as the function return the same type as its argument and that the value
has the argument type of the function. This freedom and constraint is automatically guaranteed by the
inferred typing of twice.

Chapter 8

SML# feature: record
polymorphism

The rest of this part introduce the extensions newly introduce by SML# through examples.
In this chapter, we learn programming with records based on record polymorphism.
We note that record polymorphism is not a special additional feature in record programming, but

the basic mechanism required to realize the ML’s principle in program construction: “expressions are
composed as far as they are type consistent”. Standard ML lacks this basic mechanism and therefore in
Standard ML, one cannot write ML-style program in manipulating records. For this reason, we postpone
explanation of records until this chapter.

Let’s start learning record programming basics.

8.1 Record expressions

The syntax of record expressions is given below.

expr ::= · · ·
| {l1=expr1,· · ·, ln=exprn}

l denotes a string called labels. Below is a simple record expression.

val point = {X =0.0, Y=0.0};

val point = {X = 0.0, Y = 0.0} : {X: real, Y: real}

A record whose labels are consecutive numbers starting with 1 is interpreted as a tuple and printed
specially.

{1 = 1.1, 2 = fn x => x + 1, 3 = "SML#"};

val it = (1.1,fn,"SML#") : real * (int -> int) * string

(1,2);

val it = (1,2) : int * int

In Section 7.8, we defined a multiple-argument function, namely powerUncurry (n,C). This is a function
that takes a tuple.

Just like lists, record elements can contain values of any types. A record forming function is therefore
polymorphic, as seen in the following example.

fun f x y = {X = x, Y = y};

val f = fn : [’a. ’a -> [’b. ’b -> {X: ’a, Y: ’b}]]

fun g x y = (x, y);

val g = fn : [’a. ’a -> [’b. ’b -> ’a * ’b]]

8.2 Field selection operation

The basic operation on records is to select a field value by specifying a field label. For this, the following
primitive function is defined for any label l.

43

44 CHAPTER 8. SML# FEATURE: RECORD POLYMORPHISM

#l

This function takes a record containing a field labeled with l, and returns the value of that label.
According to the ML principle, this function should be applicable to any record containing label l. For
this primitive, SML# infers the following polymorphic typing.

#X;

val it = fn : [’a#{X: ’b}, ’b. ’a -> ’b]

The notation ’a#{X:’b} is a type variable ’a which represents an arbitrary record type that contains a
field labeled X of type ’b. The inferred type is a most general type of #X. Below show some examples.

#X {X=1.1, Y=2.2};

val it = 1.1 : real

#X {X = 1, Y = 2, Z = 3};

val it = 1 : int

Functions using these operations are polymorphic in record structures, as seen in the following example.

fun f x = (#X x, #Y x);

val f = fn : [’a#{X: ’b, Y: ’c}, ’b, ’c. ’a -> ’b * ’c]

The type of f indicates that this is a function that takes any record containing X:’b and Y:’c fields
and returns a pair of type ’b * ’c. This is a most general polymorphic type of this function. So this
function can be freely combined with other expressions as far the combination is type consistent.

8.3 Record patterns

Record field selection can also be done through pattern matching. Standard ML has the following
patterns.

pat ::= · · ·
| {field list}
| {field list,...}

field ::= l=pat | l

The first pattern matches a record having the specified set of labels, and the second pattern matches any
record containing the set of specified labels. When only a label is specified in a field then it is interpreted
as a variable with the same name is specified. For example, a pattern {X, Y} is interpreted as {X = X,

Y = Y}. The following are examples of field selection through record patterns.

fun f {X = x, Y = y} = (x, y);

val f = fn : [’a, ’b. {X: ’a, Y: ’b} -> ’a * ’b]

fun f {X = x, Y = y, ...} = (x, y);

val f = fn : [’a#{X: ’b, Y: ’c}, ’b, ’c. ’a -> ’b * ’c]

fun f {X, Y, ...} = (X, Y);

val f = fn : [’a#{X: ’b, Y: ’c}, ’b, ’c. ’a -> ’b * ’c]

Record pattern can be freely combined with other patterns.

fun f ({X,...}::_) = X;

val f = fn : [’a#{X: ’b}, ’b. ’a list -> ’b]

In this example, f takes a list of records containing X field, and returns the X field of the first record in
the list.

8.4. FUNCTIONAL RECORD UPDATE 45

8.4 Functional record update

SML# contains functional record update expressions, whose syntax is given below.

expr ::= · · ·
| expr # {l1=expr1,· · ·, ln=exprn}

This expression creates a new record by modifying the value of each label li to expri. This is an expression
to create a new record; the original record expr is not mutated. This expression has a polymorphic type
according to the ML’s principle of most general typing. Below is an example using this expression.

fun f modify x = modify # {X = x};

val f = fn : [’a#{X: ’b}, ’b. ’a -> ’b -> ’a]

The following is a useful idiom in record programming.

fun reStructure (p as {Salary,...}) = p # {Salary = Salary * (1.0 - 0.0803)};

val reStructure = fn : [’a#{Salary: real}. ’a -> ’a]

Function reStructure takes an employee record p and reduces its Salary field by 8.03%. As seen in its
typing, this function can be applied to any record as far as it contains a ，Salary field.

8.5 Record programming examples

In a language supporting record polymorphic (currently SML# seems to be the only one), one can
write generic code by focusing only on relevant properties of problems. This provide a powerful tool for
modular construction of programs that scales to large software development.

To understand a flavor of this feature, let us consider a problem to simulate object movement in a
parabolic path in a Cartesian coordinate system. An object can be represented as a record containing
X:real and Y:real fields representing the current position vector, and Vx:real and Vy:real fields
representing the current velocity vector. An object may have a lot of other properties, but for writing
a program to simulate objects movement, these attributes are sufficient. Object movement is simulated
by repeatedly applying a function move that moves an object from the current location to the location
after one unit of time.

val move : [’a#{X:real, Y:real, Vx:real, Vy:real}. ’a * real -> ’a]

In this exercise, we assume that unit of time is 1 second. In the Cartesian coordinate system, since a
position vector and a velocity vector are compositions of those of the two coordinates, we can write write
functions on X and Y coordinates independently and compose them. The next position is obtained by
adding the velocity. So we can write functions on X and Y independently as below (which shows the code
and its typing in an interactive session).

fun moveX (p as {X:real, Vx:real,...}, t:real) = p # {X = X + Vx};

val moveX = fn : [’a#{Vx: real, X: real}. ’a * real -> ’a]

fun moveY (p as {Y:real, Vy:real,...}, t:real) = p # {Y = Y + Vy};

val moveY = fn : [’a#{Vy: real, Y: real}. ’a * real -> ’a]

Next, we need to write functions that change velocities. Here we assume that on X coordinate, objects
maintain its uniform motion, and on Y, objects are uniformly accelerated by gravity. Then acceleration
functions can be code as follows.

fun accelerateX (p as {Vx:real,...}, t:real) = p;

val accelerateX = fn : [’a#{Vx: real}. ’a * real -> ’a]

fun accelerateY (p as {Vy:real,...}, t:real) = p # {Vy = Vy + 9.8};

val accelerateY = fn : [’a#{Vy: real}. ’a * real -> ’a]

accelerateX is constant and therefore not needed in this simple case, but we write one for future
refinement.

The function next can be obtained by composing all of them below.

46 CHAPTER 8. SML# FEATURE: RECORD POLYMORPHISM

fun move (p, t) =

let

val p = accelerateX (p, t)

val p = accelerateY (p, t)

val p = moveX (p, t)

val p = moveY (p, t)

in

p

end

The resulting code is highly modular and type safe, and can be easily refined. For example, if we want
to add deacceleration on X coordinate by 1% per second, one need only re-write accelerateY to the
following.

fun accelerateX (p as {Vx:real,...}, t:real) = p # {Vx = Vx * 0.90};

val accelerateX = fn : [’a#{Vx: real}. ’a * real -> ’a]

For this next function, SML# infers the type we designed at the beginning of this section, and
therefore can be applied to any object having many other attributes.

8.6 Representing objects

Records are the fundamental data structures, and they are the basis for various data manipulation
models such as relational databases and object-oriented programming. As explained in Chapter12,
SML# seamlessly integrate SQL based on record polymorphism. Object-oriented programming is based
on a different computation model than functional programming, and we do not hope to represent it in a
functional language. However, generic object manipulation underlying object-oriented programming is
naturally represented using record polymorphism.

An object has a statue, receives method selector and invoke the designated method on its state.
A class can be regarded as the set of methods that belongs to the class. So we can represent a class
structure as a record of methods. Each method is coded as a function that takes a state of an object and
update it. For example, consider an object in a pointClass having X coordinate，Y coordinate，Color

property. An object state can be represented by a reference to a record of the those values such as {X
= 1.1, Y = 2.2}. Then a method can be defined as a function that takes an object state as self and
update the state. For example, a method to set a value in the X coordinate can be coded as follows.

fn self => fn x => self := (!self # {X = x});

val it = fn : [’a#{X: ’b}, ’b. ’a ref -> ’b -> unit]

This method can be applied to any objects that contain X attributes. A class can be a record consisting
of these methods with appropriate names. For example，pointClass can be defined as below.

val pointClass =

{

getX = fn self => #X (!self),

setX = fn self => fn x => self := (!self # {X = x}),

getY = fn self => #Y (!self),

setY = fn self => fn x => self := (!self # {Y = x}),

getColor = fn self => #Color (!self),

setColor = fn self => fn x => self := (!self # {Color = x})

}

An object receives a message and invoke the corresponding method on itself. In SML#, this is coded
below.

local

val state = ref {X = 0.0, Y = 0.0}

in

val myPoint = fn method => method pointClass state

end

8.7. POLYMORPHIC VARIANTS 47

We can similarly define an object having Color attribute.

local

val state = ref {X = 0.0, Y = 0.0, Color = "Red"}

in

val myColorPoint = fn method => method pointClass state

end

Under these definition, we can write the following code.

myPoint # setX 1.0;

val it = () : unit

myPoint # getX;

val it = 1.0 : real

myColorPoint # getX;

val it = 0.0 : real

myColorPoint # getColor;

val it = "Red" : string

myPoint # getColor;

(interactive):15.1-15.12 Error:

(type inference 007) operator and operand don’t agree

...

As shown in the last example, the system detect all the type errors statically.

8.7 Polymorphic variants

Records are labeled collection of component values. There is a dual concept of this structure, namely
labeled variants. This may not be familiar to many of you, but the essential ingredients are the same
as those of records, so in a system where polymorphic records are supported, polymorphic variants can
also be represented. For a type theoretical account, see [9]. In this section, we briefly introduce them
through simple examples.

Once you understand records as labeled collections of values, you can think of labeled variants as
a value attached with a service request label in a context where a labeled collection of services are
defined. For a simple example, let us consider a system where we have two point representations, one in
Cartesian coordinates and the other in polar coordinates. In this system, each representation is processed
differently, so each point data is attached a label indicating its representation. Polymorphic variant is a
mechanisms to those data with polymorphic functions. By regarding the data label as a service selector
from a given set of services, this system can be represented by polymorphic records. For example, the
following show two representations of the same point.

val myCPoint = fn M => #CPoint M {x = 1.0, y = 1.0};

val myCPoint = fn : [’a#{CPoint: {x: real, y: real} -> ’b}, ’b. ’a -> ’b]

val myPPoint = fn M => #PPoint M {r = 1.41421356237, theta = 45.0};

val myPPoint = fn : [’a#{PPoint: {r: real, theta: real} -> ’b}, ’b. ’a -> ’b]

A variant data with a tag T is considered as an object that receives a method suits, select appropriate
suit using T as the selector, and applies the selected method to itself. One you understand this idea,
then all you have to do is to write up the set of necessary methods for each tag. For example, a set of
methods to compute the distance from the origin of coordinates can be coded as below.

val distance =

{

CPoint = fn x,y,... => Real.Math.sqrt (x *x + y* y),

PPoint = fn r, theta,... => r

};

This method suit is invoked by applying an variant object to it.

myCPoint distance;

val it = 1.41421356237 : real

myPPoint distance;

val it = 1.41421356237 : real

48 CHAPTER 8. SML# FEATURE: RECORD POLYMORPHISM

In this way, various heterogeneous collections can be processed in type safe way.

Chapter 9

SML# feature: other type system
extensions

In addition to record polymorphism, SML# extend the Standard ML type system with the following.

1. rank 1 polymorphism, and

2. first-class overloading.

This chapter briefly introduce them.

9.1 Rank 1 polymorphism

Polymorphic types Standard ML type system can infer are those whose type variables are bound at the
top-level. For example, for a function

fun f x y = (x, y)

the following type is inferred.

val f = fn : [’a, ’b. ’a -> ’b -> ’a * ’b]

In contrast, SML# infers the following nested polymorphic type

fun f x y = (x, y);

val f = fn : [’a. ’a -> [’b. ’b -> ’a * ’b]]

This type can be think of as a type function that receives a type τ through type variable ’a and return
a polymorphic type [’b. ’b -> τ * ’b]. It behaves as follows.

f 1;

val it = fn : [’b. ’b -> int * ’b]

it "ML";

val it = (1, "ML") : int * string

Let t represent type variables, τ monomorphic types (possibly including type variables), and let σ
polymorphic types. Then the set of polymorphic types Standard ML can infer is roughly given by the
following grammar.

τ ::= t | b | τ → τ | τ ∗ τ
σ ::= τ | ∀(t1, . . . , tn).τ

We call this set rank 0 types.
In contract, SML# can infer the following set called rank 1 types.

τ ::= t | b | τ → τ | τ ∗ τ
σ ::= τ | ∀(t1, . . . , tn).τ | τ → σ | σ ∗ σ

We have introduced this as a technical extension for making compilation of record polymorphism more
efficient. In a type system for pure ML term without imperative feature, this extension does not increase
the expressive power of ML. However, with the value restriction introduced in the revision of Standard
ML type system, rank 1 extension become important extension. Next section explain this issue.

49

50 CHAPTER 9. SML# FEATURE: OTHER TYPE SYSTEM EXTENSIONS

9.2 Value polymorphism restriction and rank 1 typing

It is known that ML’s polymorphic typing breaks down when imperative features in Section 7.13 are
introduced. Since reference cells can be created for value of any type, one might think that they are
polymorphic primitives having the following types.

val ref : [’a. ’a -> ’a ref]

val := : [’a. ’a ref * ’a -> unit]

However, under these typings, the following incorrect code could be written, which would destroy the
system.

val idref = ref (fn x => x);

val _ = idref := (fn x => x + 1);

bval _ = !idref "wrong"

[’a. (’a -> ’a) ref] is inferred for idref. This type can be used as (int -> int) ref, and so does
the type of :=. So the second line code is accepted. At this point, idref is changed to a reference
of value of type int -> int, but its type remains to be [’a. (’a -> ’a) ref] and the third line is
accepted, and executed. However, this result in applying an integer function to a string.

In order to avoid this problem, Standard ML introduces the restriction:

polymorphism is restricted to value expressions

This is called value polymorphism restriction. Value expressions are those that do not execute any
computation, such as constants, variables, and function expressions. ref (fn x => x) calls primitive
ref and therefore not a value expression. With this restriction, function applications cannot be given
a polymorphic type. In this (rather crude) way, ML prevents a function containing a reference cannot
have a polymorphic type, which cause the above problem.

SML# follows this value polymorphism restriction. However, in SML#，polymorphic types can be
given to sub-expression such as function body or record component, value restriction is significantly
reduced in practice. For example, consider the following function definition and application.

val f = fn x => fn y => (x, ref y)

val g = f 1

In Standard ML, f is given the following type.

val f = _ : [’a, ’b. ’a -> ’b -> ’a * ’b ref]

Then an application of f such as f 1 contains a free type variable, but since this is not a value expression
and therefore the free type variable cannot be rebind to make a polymorphic type. In contrast, SML#
infer the following rank 1 type for f.

val f = _ : [’a. ’a -> [’b. ’b -> ’a * ’b ref]]

The function result type [’b. ’b -> ’a * ’b ref] is inferred before the function application. As a
result, the type of f 1 is obtained by replacing ’a with int in [’b. ’b -> ’a * ’b ref] without
re-inferring a polymorphic type as seen below.

val g = _ : [’a. ’b -> int * ’b ref]

9.3 First-class overloading

In ML, some of commonly used primitives are overloaded. For example, binary addition + can be used
on several types included int, real, word as shown below.

1 + 1;

val it = 2 : int

1.0 + 1.0;

val it = 2.0 : real

0w1 + 0w1;

val it = 0wx2 : word

9.3. FIRST-CLASS OVERLOADING 51

Different from polymorphic functions, a different implementation for + (i.e. one of Int.+, Real.+,

Word.+ in the above example）is selected based on the context in which it is used. In Standard ML
this overloading is resolved at the top-level at the end of each compilation unit. If there remain multiple
possibilities then a predetermine one is selected. For example, if you write

fun plus x = x + x

in Standard ML, then Int.+ is selected for + and plus is bound to a function of type int -> int.
This strategy works fine, but this will become a big obstacle in integrating SQL, where most of the

primitives are overloaded. If we determine the types of all the primitives in a SQL query at the time
of is definition, then we cannot make full use of ML polymorphism in dealing with databases. For this
reason, SML# introduces a mechanism to treat overloaded primitive functions as first-class functions.
For explain, SML# infers the following polymorphic type for plus.

fun plus x = x + x;

val plus = fn : [’a::{int, word, int8, word8, ...}. ’a -> ’a]

This function can be used as a function of any type obtained by replacing ’a with one of int, word, int8,
word8, int16, word16, int64, word64, intInf, real, real32 (int16,. . . are omitted). The constraint
’a::{...} on type variable ’a indicates the set of allowable instance types.

Chapter 10

SML# feature: direct interface to C

C is the standard language in system programming. SML# support direct interface to C. This feature
allows the programmer to use various OS libraries and other low-level functions implemented in C. This
chapter explain this feature.

10.1 Declaring and using C functions

In order to use C function, you only have to declare it in SML# in the following syntax.

val id = _import "symbol" : type

symbol is the name of the C function. type is its type. Next section explain how to write the type of a
C function.

This declaration instructs SML# compiler to link the named function and bind the SML# variable
id to that function. A target function linked by this declaration can be any code as far as it is in a
standard calling convention of the OS in which SML# runs. The linking to the function is performed at
linking time. So, to produce an executable file of SML# program containing this import declaration,
it is required to specify either a library or an object file to the command line of SML# command to link
it with the SML# program. Some of standard C libraries (including libc and libm in Unix family OS)
are linked by default.

This declaration can appear whenever val declaration is allied. After this declaration, variable id
can be used as an ordinary variable defined in SML#.

As an example, consider the standard C library function.

int puts(char *);

This function takes a string, appends a newline code and outputs it to the standard output, and returns
the number of characters actually printed. If printing fails, then it returns the integer representing EOF

(which is −1 in Linux). This function can be used by writing the following declarations.

val puts = _import "puts" : string -> int

As seen in this example, C function can bound and used just by writing import keyword followed by
the name and the type of the desired function. The following is interactive session using puts.

val puts = _import "puts" : string -> int;

val puts = _ : string -> int

puts "My first call to a C library";

My first call to a C library

val it = 29 : int

map puts ["I","became","fully","operational","in","April","6th","2012."];

I

became

fully

operational

in

April

53

54 CHAPTER 10. SML# FEATURE: DIRECT INTERFACE TO C

2nd

2012.

val it = [2, 7, 6, 12, 3, 6, 4, 5] : int list

The imported C functions can be freely used according to the ML’s programming principle – “expressions
are freely composed as far as they are type consistent”.

10.2 Declaring types of C functions

C functions that can be imported to SML# are those whose types are representable in SML#. The type
in import declaration is the type of C function written in SML# notation. The variable specified in
the val declaration is bound to the imported C function. The type of this variable is an SML# function
type that is corresponding to the type of the C function.

A C function type in import declaration is of the form:

(τ1, τ2, · · ·, τn) -> τ

This notation represents a C function that takes n arguments of type τ1, τ2, . . . , τn and returns a value
of τ type. Parentheses can be omitted if there is just one argument. What τ is is described below. If
there is no argument, write as follows:

() -> τ

If the return type is void in C, write as follows:

(τ1, τ2, · · ·, τn) -> ()

If the C function has a variable length argument list, use the following notation:

(τ1, · · ·, τm, ...(τm+1, · · ·, τn)) -> τ

This is the type of a C function that takes at leastm arguments followed by variable number of arguments.
Since SML# does not support variable length argument lists, user need to specify the number and types
of arguments in the variable length part of the argument list. This notation means that arguments of
τm+1, . . ., τn type are passed to the function.

In the argument list and the return type of the above C function type notation, you can specify
any SML# type that is corresponding to a C type. In what follows, we refer to such SML# types as
interoperable types. The set of interoperable types include the following:

• Any integer type except IntInf, such as int, word, and char.

• Any floating-point number type, such as real and Real32.real.

• Any tuple type whose any field type is an interoperable type, such as int * real.

• Any vector, array and ref type whose element type is an interoperable type, such as string,
Word8Array.array, int ref.

The correspondence between these interoperable types and C types are given as follows:

• The following table shows the correspondence on integer types and floating-point number types.

SML#’s interoperable type corresponding C type note
char char Signedness is not specified, similar to C.
word8 unsigned char We assume a byte is 8 bit.
int int Natural size of integers
word unsigned int

Real32.real float IEEE754 32-bit floating-point numbers
real double IEEE754 64-bit floating-point numbers

• Any τ vector and τ array type is corresponding to the type of a pointer to an array whose
element type is the C type corresponding to τ type. The array pointed by an array pointer is
mutable. In contrast, that of an vector pointer is immutable. In other words, the element type of
an array pointed by an vector pointer is qualified by const qualifier.

10.3. BASIC EXAMPLES OF IMPORTING C FUNCTIONS 55

• string type is corresponding to the type of a pointer to an array of const char. The last element
of the array pointed by a string pointer is always terminated by a null character. So a string

pointer can be regarded as a pointer to a null-terminated string.

• Any τ ref type is corresponding to the type of a pointer to the C type corresponding to τ . A ref

pointer points to a mutable array of just one element.

• Any tuple type τ1 * · · · * τn is corresponding to the type of a pointer to a immutable structure
whose members are τ1, . . . , τn type in this order. If all of τ1, . . . , τn are same type, this tuple type
is also corresponding to the type of a pointer to an array.

Values constructed by SML# are passed transparently to C functions without any modification and
conversion. So, user can pass an array allocated in SML# program to a C function that modifies the
given array, and obtain the modification by the C function in SML# program.

The entire type of a C function is converted to an SML# function type whose argument type is a
tuple type of the argument list types of the C function. There is the following limitation in usage of
interoperable types in the C function notation:

• Interoperable types that corresponds to a C pointer type, such as array type and tuple type, cannot
be specified as a return type of a C function.

10.3 Basic examples of importing C functions

Let us import some standard C library functions to SML#. At first, we need to look up their prototype
declarations from the manual or the header file of the functions we intend to import. Here, suppose we
want to import the following functions.

double pow(double, double);

void srand(unsigned);

int rand(void);

Next, we need to write the types of the above functions by using the interoperable types that corresponds
to the argument and return types of those functions.

val pow = _import "pow" : (real, real) -> real

val srand = _import "srand" : word -> ()

val rand = _import "rand" : () -> int

Then these C functions are imported to SML# as SML# functions of the following types.

val pow : real * real -> real

val srand : word -> unit

val rand : unit -> int

The printf function can also be imported to SML# by using the notation of the variable length
argument list. The prototype of printf is given below.

int printf(const char *, ...);

Corresponding to this prototype, we can import printf by the following import declaration.

val printfIntReal = _import "printf" : (string, ...(int, real)) -> int

The type of printfIntReal is as follows.

val printfIntReal : string * int * real -> int

We note that when calling this printIntReal function, its first argument must be a output format string
that requires just two arguments of an integer and a floating-point number in this order.

Importing a function that takes pointer arguments needs special attention. In C, we often use
pointer arguments in two ways; passing a large data structure by a reference to it, or specifying a buffer
to store the result of a function. An interoperable type is corresponding to one of the usage of pointer
arguments. So we need to carefully choose an interoperable type representing a pointer argument by its
usage according to the manual of the C function we intend to import.

Let us import some C functions that have pointer arguments. Suppose we want to import modf

function. The prototype of modf is as follows.

56 CHAPTER 10. SML# FEATURE: DIRECT INTERFACE TO C

sample.c file:

#include <math.h>

double f(const struct {double x; double y;} *s) {

return sqrt(s->x * s->x + s->y * s->y);

}

sample.sml file:

val f = _import "f" : real * real -> real

val x = (1.1, 2.2);

val y = f x;

print ("result : " ^ Real.toString y ^ "\n");

Execution:

gcc -c sample.c

smlsharp sample.sml sample.o

a.out

result : 2.459675

Figure 10.1: Passing a tuple to user-defined C function

double modf(double, double *);

According to the manual of modf, the second argument of pointer type must specify the destination
buffer of the result of this function. So we specify an interoperable type of a mutable value to the type
of the second argument.

val modf = _import "modf" : (real, real ref) -> real

We need to pay special attention to pointers to char. In C, there are a lot of meaning a char pointer
exactly means. For example, a char pointer usually means a null-terminated string. In the other case, a
char pointer is used as a pointer to most generic type of binary data buffers. Suppose we try to import
sprintf function. Its prototype is given below.

int sprintf(char *, const char *, ...);

The first char pointer is a pointer to a destination buffer, and the second one represents a null-terminated
string. According to this difference of usage of two pointers, we give the following type annotation to
the import declaration.

val sprintfInt = _import "sprintf" : (char array, string, ...(int)) -> int

We can import any user-defined C function to SML#, while we only use standard C library functions
to describe how to import C functions so far. Figure 10.3 shows an example of importing an user-defined
function to SML# and passing a structure from SML# to the C function.

10.4 Using dynamically linked libraries

The declaration

val id = _import "symbol" : type

is statically resolved to a C function having the name symbol . When SML# compiles a source file
containing this declaration, the compiler generates an object file containing symbol as an external name.
When an executable program is build from these objects files, the system linker links these object files
with C functions. This is also true in interactive mode, which is implemented by a simple iteration that
performs separate compilation, linking and loading.

However for a library that is only available at runtime, such static resolution is impossible. To cope
with those situation, SML# provide dynamic linking through the following module.

10.4. USING DYNAMICALLY LINKED LIBRARIES 57

samle.c file：

int f(int s) {

return(s * 2);

}

Execution:

$ gcc -shared -o sample.so sample.c

$ smlsharp

SML# version 1.00 (2012-04-02 JST) for x86-linux

val lib = DynamicLink.dlopen "sample.so";

val lib = _ : lib

val fptr = DynamicLink.dlsym(lib, "f");

val fptr = ptr : unit ptr

val f = fptr : _import int -> int;

val f = _ : int -> int

f 3;

val it = 6 : int

Figure 10.2: Using dynamic link library

structure DynamicLink : sig

type lib

type codeptr

datatype scope = LOCAL | GLOBAL

datatype mode = LAZY | NOW

val dlopen : string -> lib

val dlopen’ : string * scope * mode -> lib

val dlsym : lib * string -> codeptr

val dlclose : lib -> unit

end

These functions provide the system services of the same names provide in a Unix-family OS.

• dlopen opens a shared library.

• dlopen’ takes one of those parameters to control dlopen. RTLD LOCAL, RTLD GLOBAL and RTLD LAZY,
RTLD NOW. For its details, consult OS manual on dlopen.

• dlsym takes a library handle obtained by dlopen and a function name, and returns a C pointer to
the function.

• dlclose closes the shared library.

The C pointer returned by dlsym can be converted to SML# function by the following expression.

exp : _import type

exp is a SML# expression of type codeptr. type specifies the type of C function as in import declaration.
Figure 10.2 shows an example.

Chapter 11

SML# feature: Multithread
programming

Through the seamless and direct C interface, SML# supports multiple threads that run concurrently on
multicore processors. SML# allows you to exploit two thread libraries directly in SML#: POSIX thread
(Pthread) library, which is a part of operating systems; and MassiveThreads, a lightweight fine-grain
thread library. In both libraries, you can create multiple threads in SML#, each of which executes a
SML# routine and is scheduled to a CPU core by operating systems or the MassiveThreads’ thread
scheduler. This chapter introduces multithread programming in SML#.

11.1 Programming with Pthreads

SML# provides the Pthread structure that is a direct binding of the Pthread library in SML#. The
pthread create and pthread join functions, which creates and join a thread, respectively, are provided
as the following SML# functions:

Pthread.Thread.create : (unit -> int) -> Pthread.thread

Pthread.Thread.join : Pthread.thread -> int

The following is a simple example that computes fib 42 in a different thread.

fun fib 0 = 0 | fib 1 = 1 | fib n = fib (n - 1) + fib (n - 2);

val fib = fn : int -> int

val t = Pthread.Thread.create (fn _ => fib 42);

val t = ptr : Pthread.thread

Pthread.Thread.join t;

val it = 267914296 : int

The SML# runtime system for direct C interface is carefully designed so that SML# functions can
be passed to a C function as call-back functions and can be called back from a C function running in
a thread that is different from the one that originally calls the C function. Using this features, the
programmer can enjoy multi-thread programming simply by importing the Pthread library. To do this,
we define the type

type pthread_t = unit ptr

for Pthread handles. τ ptr is a built-in type for C pointers; unit ptr corresponds to void* type in C.

The thread creation function, pthread create, is then imported by the following declaration.

val pthread_create =

_import "pthread_create"

: (pthread_t ref, unit ptr, unit ptr -> unit ptr, unit ptr) -> int

Using this, we can write a function spawn that creates a thread as follows.

59

60 CHAPTER 11. SML# FEATURE: MULTITHREAD PROGRAMMING

fun spawn f =

let

val r = ref (Pointer.NULL ())

in

pthread_create (r,

Pointer.NULL (),

fn _ => (f () : unit; Pointer.NULL ()),

Pointer.NULL ());

!r

end

Pointer.NULL () return s the NULL pointer in C.
Similarly, pthread join is imported and used to define a function join that waits for the termination

of a created thread.

val pthread_join =

_import "pthread_join"

: (pthread_t, unit ptr ref) -> int

fun join t =

(pthread_join (t, ref (Pointer.NULL ())); ())

Using these functions, we can write the same program as shown at the beginning of this section.

fun fib 0 = 0 | fib 1 = 1 | fib n = fib (n - 1) + fib (n - 2);

val fib = fn : int -> int

val r = ref 0;

val r = ref 0 : int ref

fun g () = r := fib 42;

val g = unit -> unit

val t = spawn g;

val t = ptr : unit ptr

join t;

val it = () : unit

!r;

val it = 267914296 : int

Note that it is dengerous to replace the line

val t = spawn g;

with

val t = spawn (fn () => r := fib 42);

because the garbage collector may collect the closure generated by the function expression before the
function is called in another thread. See Section 29.2 for details.

11.2 Fine-grain multithread programming with MassiveThreads

SML# provides MassiveThreads-based multithread support by default. MassiveThreads is a user-level
lightweight thread library in C provided by the University of Tokyo. The SML#’s direct C interface
and unobtrusive concurrent garbage collection enable SML# programs to call MassiveThreads directly.
MassiveThreads allows us to create millions of user threads, say 1,000,000 threads, that runs concurrently
on multicore processors.

By default, time SML# runtime is restricted to use only one CPU core for the performance of
single-thread programs. To enable MassiveThreads on multicore processors, specify at least one MYTH_*
environment variable as a configuration of MassiveThreads. A typical one is MYTH_NUM_WORKERS that
specifies the number of worker threads, i.e., the number of CPU cores the program uses. For example,
do the following command to start an interactive session:

$ MYTH_NUM_WORKERS=0 smlsharp

11.2. FINE-GRAIN MULTITHREAD PROGRAMMING WITH MASSIVETHREADS 61

In Linux, setting MYTH_NUM_WORKERS to 0 means using all available CPU cores.
SML# provides Myth structure that is a direct binding of MassiveThreads library in SML#. In

Myth.Thread structure, you find basic functions for thread management. Its primary functions are the
following:

• User thread creation.

Myth.Thread.create : (unit -> int) -> Myth.thread

create f creates a new user thread that computes f (). The created user thread will be sched-
uled to an appropriate CPU core by the MassiveThreads task scheduler. Its scheduling policy is
non-preemptive; a thread occupies a CPU core until either it calls a thread control function of
MassiveThreads (Myth.Thread.yield) or it terminates.

• User thread join.

Myth.Thread.join : Myth.thread -> int

join t waits for the completion of thread t and returns the result of the computation of t. Any user
thread created by create must be joined sometime in the future. Note that this Myth.Thread

structure is just a direct binding of C functions, as in C, the resource of the created threads must
be freed explicitly.

• User thread scheduling.

Myth.Thread.yield : unit -> unit

yield () yields the CPU core to other threads.

As an introduction to MassiveThreads programming, let us write a task parallel program. Roughly
speaking, you can write a task parallel program by the following steps:

1. Write a recursive function that performs divide-and-conquer.

2. Surround each recursive call with a pair of create and join so that each recursive call is evaluated
in a different thread.

3. To prevent from creating very short threads, set a threshold (cut-off) to stop thread creation and
do recursive calls in the same thread. The threshold must be decided so that sequential wall-clock
time of a user thread is sufficiently longer than the overhead of thread creation. In practice, 3–4
microseconds for a user thread is good enough.

For example, let us write a program that compute fib 40 recursively. The following is a typical definition
of recursive fib function:

fun fib 0 = 0

| fib 1 = 1

| fib n = fib (n - 1) + fib (n - 2)

val result = fib 40

To compute fib (n - 1) and fib (n - 2) in parallel, surround one of them with create and join:

fun fib 0 = 0

| fib 1 = 1

| fib n =

let

val t2 = Myth.Thread.create (fn () => fib (n - 2))

in

fib (n - 1) + Myth.Thread.join t2

end

val result = fib 40

This is not a goal; unfortunately, if n is very small, the computation cost of fib n is apparently much
smaller than the overhead of thread creation. To avoid this, we introduce a threshold so that it computes
sequentially if n is smaller than 10.

62 CHAPTER 11. SML# FEATURE: MULTITHREAD PROGRAMMING

val cutOff = 10

fun fib 0 = 0

| fib 1 = 1

| fib n =

if n < cutOff

then fib (n - 1) + fib (n - 2)

else

let

val t2 = Myth.Thread.create (fn () => fib (n - 2))

in

fib (n - 1) + Myth.Thread.join t2

end

val result = fib 40

Now it is all done! Running this program, it eventually generates 3,524,577 user threads in total.

Chapter 12

SML# feature: seamless SQL
integration

Accessing databases is essential in most of practical programs that manipulate data. The most widely
used database query language is SQL. The conventional method of accessing databases to generate SQL
command string, which is cumbersome and error prone. SML# integrates SQL expressions themselves
as polymorphically typed first-class citizens. This chapter explain this feature.

12.1 Relational databases and SQL

Most of practical database systems are relational databases. To understand SML# database integration,
this section review the basics notions of relational databases and SQL.

In the relational model, data are represented by a set of relations. A relation is a set of tuples, each
of which represents association of attribute values such as name, age, and salary. Such a relation is
displayed as a table of the following form.

name age salary
”Joe” 21 10000
”Sue” 31 20000
”Bob” 41 20000

A relational database is system to manipulate a collection of such tables. A relation R on the sets
A1, A2, · · · , An of attribute values is mathematically a subset of the Cartesian product A1×A2 · · ·×An.
Each element t in R is an n element tuple (a1, . . . , an). In an actual database system, each component
of a tuple has attribute name, and a tuple is represented as a labeled record. For example, the first
line of the example table above is regarded as a record {name="Joe", age=21, salary=1000}. On
these relations, a family of operations are defined, including union, projection, selection, and Cartesian
product. A set of tables associated with a set of these operations is called the relational algebra. One
important thing to note on this model is that, as its name indicates, the relational model is an algebra
and that it is manipulated by an algebraic language. An algebraic language is a functional language that
does not have function expression.

In relational databases, the relational algebra is represented by the language called SQL, which is
language of set-value expressions. The central construct of SQL is the following SELECT expression.

SELECT t1.l1 as l′1,. . ., tm.lm as l′m
FROM R1 as t1, . . ., Rn as tn
WHERE P (t1, . . . , tn)

Here we used the following meta variables.

• R: relation variables

• t: tuple variables

• l: labels, or attribute names

63

64 CHAPTER 12. SML# FEATURE: SEAMLESS SQL INTEGRATION

• t.l: the l attribute of tuple l

The operational meaning of a SELECT expression can be understood as follows.

1. Evaluate each Ri in FROM clause, and generate their Cartesian product R1 × · · · ×Rn

2. Let (t1, . . . , tn) be any representative tuple in the product.

3. Select the tuples that satisfies the predicate P (t1, . . . , tn) specified in WHERE clause from the product.

4. For each element (t1, . . . , tn) in the select set, construct a record {l′1=t1.l1, . . ., l′m=tm.lm}.

5. Collect all these records.

For example, let the above example table be named as Persons and consider the following SQL.

SELECT P.name as name, P.age as age

FROM Persons as P

WHERE P.salary > 10000

This expression is evaluated as follows.

• The Cartesian product of the soul relation Persons is Persons itself.

• Let P be any tuple in Persons.

• Select from Person all the tuples P such that P.Salary > 10000. We obtain the following set.

name age salary
”Sue” 31 20000
”Bob” 41 20000

• For each tuple P in this set, compute the new tuple {name=P.name, age=P.age} to obtain the
following set.

name age
”Sue” 31
”Bob” 41

The is the result of the expression.

This result represent the set (list) of records: {{name="Sue", age=31}, {name="Bob", age=31}}.

12.2 Integrating SQL in SML#

We observe that SQL SELECT command is an expression that construct a table from a set of tables
specified in FROM clause. In practice, SQL commands are usually evaluated against a particular database
connection. Since database connection is conceptually a set of tables, if we generalize SQL as a language
that takes a database connection and returns a relation, an SQL command can be regarded as a function
that takes a set of tables and returns a table. As we have already observe that SQL SELECT is an
algebraic expression. Then SQL is a functional language on tables.

Since tables are set of records, table value functions should be typable using record polymorphism.
According to our analysis, there is one subtle point in typing beyond record polymorphism [14]．For this
reason, SML# introduced the following special syntax for SQL query functions.

_sql db => select #P.name as name, #P.age as age

from #db.Persons as P

where #P.salary > 10000

sql db => ... represent a function that takes a database connection through parameter db. > in a
sql expression is SQL primitive for numerical comparison operation defined in the SQL module that
implement various SQL specific primitives. #P.Name selects Name field from P. #db.Persons selects
Persons table from db. These correspond to #Name P and #Persons db in SML# expression. In sql

x => expr expression, we choose these syntax that are closer to SQL SELECT commands.
For this expression, SML# infers the following polymorphic type.

12.3. QUERY EXECUTION 65

val it = fn

: [’a#{Persons: ’b list},

’b#{age: ’c, name: ’e, salary: ’g},

’c::{int, intInf, word, char,...},

’d::{int, intInf, word, char,...},

’e::{int, intInf, word, char,...},

’f::{int, intInf, word, char,...},

’g::{int, intInf, ’h option},

’h::{int, intInf}.

’a SQL.conn -> {age: ’c, name: ’e} SQL.cursor]

This type indicates that this query is a function from a database connection of type ’a conn to a table
of tuple {age: ’c, name: ’e}. ’a represents the structure of the input database.

This is indeed a most general polymorphic type of the above query, By the fact that SML# can
infer a most general polymorphic type, we are guarantees that SQL can be used in SML# based on ML
programming principle: “expressions are freely composed as far as they are type consistent”, i.e. SQL
expressions can be freely combined with any other language construct of SML# as far as they are type
consistent. This will open up flexible and type safe programming using databases.

12.3 Query execution

Database can be accessed by applying query function defined by sql x => exp expression to a database
connection. For this purpose, SML# provides the following constructs.

• Database server expressions

_sqlserver serverLocation : τ

This expression locates a database server. serverLocation is the location information of a database
server. Its concrete syntax is determined by the database system to be connected. τ is the type
of the database to be connected. It describes the table names and their types using the syntax
of record types. Evaluating this expression always succeeds and yields a database server object of
type τ SQL.server, which contains the database server information. See Section 22.3 for details.

• Database connection primitive.

SQL.connect : [’a. ’a SQL.server -> ’a SQL.conn]

This primitive takes a database server value, extract the database location stored in the value,
attempts to connect to the database, and if successful it checks that the connected database
indeed has the structure described by τ , and then return a database connection object of type τ
SQL.conn.

• Database query execution. The sql expression itself is a function that executes its corresponding
query on a database. By applying a connection to a query function, the query is executed on a
database through given connection. The result is returned as a cursor of type τ SQL.cursor.

• Conversion of the query result.

SQL.fetchAll : [’a. ’a SQL.cursor -> ’a list]

SQL.fetch : [’a. ’a SQL.cursor -> (’a * ’a SQL.rel) option]

SQL.fetch fetches the first tuple at the cursor and forward the cursor to the next tuple. SQL.fetchAll
reads all tuples after the cursor and converts them to a list of records.

• Post processing.

SQL.closeCursor : [’a. ’a SQL.cursor -> unit]

SQL.closeConn : [’a. ’a SQL.conn -> unit]

SQL.closeCursor terminates the query and SQL.closeConn close a database connection.

66 CHAPTER 12. SML# FEATURE: SEAMLESS SQL INTEGRATION

12.4 Query examples

Let us now connect and use an actual database from SML#. SML# version 4.0.0 support PostgreSQL.
To use a database, you need to install and start PostgreSQL server.

Here we show a standard step in Linux system to set up PostgreSQL server. For more details, consult
PostgreSQL document.

1. Login as postgres.

2. Start PostgreSQL server. The command pg ctl start -D /usr/local/pgsql/data will do this.

3. Create a PostgreSQL user role by executing command createuser myAccount , where myAccount
is your user account.

4. Return to your account, and execute command createdb mydb to create a database called mydb.

5. Use the SQL interpreter to create a table. For example, the table in Section 12.1 can be created
as follows.

$ psql mydb

mydb# CREATE TABLE Persons (

name text not null, age int not null, salary int not null);

mydb# INSERT INTO Persons VALUES (’Joe’, 21, 10000);

mydb# INSERT INTO Persons VALUES (’Sue’, 31, 20000);

mydb# INSERT INTO Persons VALUES (’Bob’, 41, 30000);

6. Check that the database can be accessed. You should get the following output.

$ psql mydb;

mydb=# SELECT * FROM Persons;

name | age | salary

------+-----+--------

Joe | 21 | 10000

Sue | 31 | 20000

Bob | 41 | 20000

(3 rows)

Now let’s access this database from SML#. Let the query function defined in Section 12.2 myQuery.
In an interactive session, you should get the following.

$ smlsharp

val myServer = _sqlserver SQL.postgresql "dbname=mydb" : {Persons:{name:string,

age:int, salary :int} list};

val myServer = _ : {Persons: {age: int, name: string, salary: int} list} SQL.server

val conn = SQL.connet myServer;

val conn = _ : {Persons: {age: int, name: string, salary: int} list} SQL.conn

val rel = myQuery conn;

val rel = {Persons: {age: int, name: string, salary: int}} list SQL.conn

SQL.fetchAll rel;

val it = {{age=32, name="Sue"}, {age=41, name="Bob"}} : {age:int, name: string}

list

12.5 Other SQL statements

SQL contains many other functionalities. SML# version 4.0.0 support the following commands:

• query (SELECT),

• insert and delete (INSERT, DELETE),

• table update (UPDATE), and

12.5. OTHER SQL STATEMENTS 67

• transaction (BEGIN, ROLLBACK, COMMIT).

In SELECT queries, the following features are available in addition to the basic features:

• natural join (NATURAL JOIN),

• inner join (INNER JOIN),

• grouping (GROUP BY, HAVING),

• subqueries including corelated subqueries and EXISTS subqueries,

• sorting (ORDER BY), and

• limitation of row numbers (LIMIT, OFFSET, FETCH)

See Chapter 22 for the syntax of SQL expressions. SML# development team has been working on
adding SQL features towards complete integration of SQL in SML#.

Chapter 13

SML# feature: dynamic types and
typed manipulation of JSON

In network communication or file I/O, data are serialized to a character string in a specified format.
For example, JSON is one of the most popular data serialization format in the Internet. Unlike ML
data, serialized data are inherently untyped and heterogeneous. Therefore, to deal with serialized data
in ML, untyped programming is needed even if the serialized data have a structure similar to some
data structure in ML, such as a record. SML#’s dynamic typing mechanism allows the users to convert
between dynamically-structured data including serialized data and statically-typed values. On top of
this, SML# provides a type-safe way to manipulate JSON data; it gives the structures of JSON data
static types like ML records and provides statically-typed constructs for JSON manipulation. This
chapter describes these features.

13.1 Dynamic typing

In dynamically-typed languages, the users are allowed to perform operations depending on the types of
values at runtime. A value in a dynamically-typed language is a uniform data structure consisting of
the runtime representation of a type and a value of the type. SML# provides a mechanism to deal with
this dynamically-typed data structures.

The Dynamic.void Dynamic.dyn type is the type of dynamically-typed values. The meaning of
Dynamic.void shall be described below. The following primitives are given for this type:

• The function Dynamic.dynamic : [’a#reify. ’a -> Dynamic.void Dynamic.dyn]. This intro-
duces a dynamically-typed value from an arbitrary ML value. ’a#reify indicates that the runtime
type information of the instance of ’a is required. Unlike other type kinds, the reify kind does
not restrict the set of types over which the type variable ranges.

• The expression _dynamic exp as τ . This checks the type information of dynamically-typed value
exp at runtime and casts it to the type τ . If the cast failed, the runtime exception Dynamic.RuntimeTypeError
is raised.

Furthermore, the following expression is provided:

_dynamiccase exp of dpat1 => exp1 | · · · | dpatn => expn

This performs dynamic type check and pattern matching with a dynamically-typed value exp. A pattern
dpati may be an arbitrary ML pattern except that variable patterns must be type-annotated.

The following interactive session is an example of a heterogenous list and functions proceeding it.

val x = Dynamic.dynamic {name = "Sendai", wind = 7.6};

val x = _ : Dynamic.void Dynamic.dyn

val y = Dynamic.dynamic {name = "Shiroishi", weather = "Sunny"};

val y = _ : Dynamic.void Dynamic.dyn

val z = Dynamic.dynamic {name = "Ishinomaki", temp = 12.4};

val z = _ : Dynamic.void Dynamic.dyn

val l = [x, y, z];

69

70CHAPTER 13. SML# FEATURE: DYNAMIC TYPES AND TYPEDMANIPULATION OF JSON

val l = [_, _, _] : Dynamic.void Dynamic.dyn list

fun getName r = _dynamiccase r of {name:string, ...} => name;

val getName = fn : [’a. ’a Dynamic.dyn -> string]

map getName l;

val it = ["Sendai", "Shiroishi", "Ishinomaki"] : string list

fun getTemp r =

> _dynamiccase r of

> {temp:real, ...} => SOME temp

> | _ : Dynamic.void Dynamic.dyn => NONE;

val getTemp = fn : [’a. ’a Dynamic.dyn -> real option]

map getTemp l;

val it = [NONE, NONE, SOME 12.4] : real option list

Dynamically-typed values are not restricted to records; values of arbitrary types, such as datatypes,
functions, and opaque types, can become dynamically-typed values and get back to statically-typed
values.

13.2 Reification of terms and types

In statically-typed langauges, type information is usually meta information that only the compiler man-
ages and therefore it is not included as a data structure in the object code. The memory-level data
structure of a value is also meta information depending on the type information. “Reification” is the
operation that extracts such meta information to objects that the code can deal with. The SML#’s
dynamic typing feature is constructed on top of the reification mechanism. The users is also allowed to
access the reification mechanism and obtain type information and internal structure of values as ordinary
ML datatype.

SML# provides the following functions for this purpose:

• Dynamic.dynamicToTerm : Dynamic.void Dynamic.dyn -> Dynamic.term．This extracts the value
structure of a dynamically-typed value as a term representation of the Dynamic.term type. The
Dynamic.term type is an ordinary ML datatype and therefore you can analyze it by the case

expression.

• Dynamic.dynamicToTy : Dynamic.void dyn -> Dynamic.ty．This extracts the type informa-
tion of a dynamically-typed value as a term representation of the Dynamic.ty type. Similarly
to Dynamic.term, the Dynamic.ty type is an ordinary ML datatype.

• Dynamic.termToDynamic : Dynamic.term -> Dynamic.void Dynamic.dyn．This constructs a dynamically-
typed value from its term representation. By combining _dynamic construct, you can convert
Dynamic.term structures to statically-typed ML values.

The following interactive session is an example of constructing an ML record of different type from
another ML record.

open Dynamic;

...

val x = {name = "Sendai", wind = 7.6};

val x = {name = "Sendai", wind = 7.6} : {name: string, wind: real}

val d = dynamicToTerm (dynamic x);

val d = RECORD {#name => STRING "Sendai", #wind => REAL64 7.6} : term

case d of

> RECORD m =>

> RECORD (RecordLabel.Map.insert

> (m, RecordLabel.fromString "weather", STRING "cloudy"))

> | x => x;

val it =

RECORD

{#name => STRING "Sendai", #weather => STRING "cloudy", #wind => REAL64 7.6}

: term

termToDynamic it;

13.3. PRETTY PRINTER 71

val it = _ : void dyn;

_dynamic it as {name:string, wind:real, weather:string};

val it =

{name = "Sendai", weather = "cloudy", wind = 7.6}

: {name: string, weather: string, wind: real}

13.3 Pretty printer

In the SML#’s interactive session, ML values of arbitrary types are printed to the standard output. This
feature is realized on top of the reification mechanism. The user is allowed to invoke the printer of the
interactive session from user programs. The following functions are available:

• Dynamic.pp : [’a#reify. ’a -> unit]. This pretty-prints the given ML value of arbitrary type
to the standard output. The format is similar to the interactive session. This is useful for print
debug.

• Dynamic.format : [’a#reify. ’a -> string]. Instead of printing to standard output, this
returns a string of the pretty-printed ML value.

These functions can be used in polymorphic functions. Note that using these functions in a polymor-
phic function may change the type of the function by adding reify kind to the type of the function.

13.4 JSON as a partially dynamic record

JSON is a data structure consisting of the following: basic types such as integers and strings; object types,
which associate values with labels; and array types which represent data sequences. These structures
would corresponds to basic types, record types, and list types of ML.

However, JSON and ML are inherently different since JSON is untyped and heterogeneous. In JSON,
objects received from the same source do not always have the same type of values in a same label. Even
the existence of a label is not guaranteed. In addition, all elements in a JSON array does not always
have same type. In practice of JSON handling, we often meet such heterogeneous data. This means the
two facts: it is difficult to give ML types to JSON data, and it is useless to limit JSON data in those
that have ML types.

SML# deals with such heterogeneous JSON data in a type-safe way based on the idea of “partially
dynamic records.” A partially dynamic record is a dynamically typed records, but some parts of it is
statically known. In SML#, every JSON data is regarded as a partially dynamic record.

Let us look into JSON handling in SML# through an example.

When a JSON is read, it initially has Dynamic.void Dynamic.dyn type. This type means that it is
a JSON whose structure is not statically known at all. For example, suppose that we intend to read the
following JSON:

{"name" : "Sendai", "wind" : {"speed" : 7.6, "deg" : 170.0}}

Its type is Dynamic.void Dynamic.dyn at first.

Suppose also that we expect the given JSON includes at least name field of string (if it is not found, a
runtime exception is raised) and intend to read the value of that field. To do this, we perform a dynamic
type check against the JSON to make sure that it has the name field of string type. If this check is
passed, the JSON certainly has the name field as we expected. To represent this fact in static typing,
SML# gives the result of this check a type {name : string} Dynamic.dyn.

After the dynamic check, we extract its statically known part by using the following function:

Dynamic.view : [’a#reify. ’a Dynamic.dyn -> ’a]

This function allows us to obtain a record of type {name : string} from the JSON of type {name :

string} Dynamic.dyn. The meaning of type kind #reify shall be described below.

We successfully convert the given JSON data to an ML record. Succeeding data processing can be
carried out by freely combining ML constructs in a type-safe way.

72CHAPTER 13. SML# FEATURE: DYNAMIC TYPES AND TYPEDMANIPULATION OF JSON

13.5 Language constructs for JSON manipulation

SML# provides the following constructs:

• Importing a JSON data.

Dynamic.fromJson : string -> Dynamic.void Dynamic.dyn

This function parses a JSON string and read it as a partially dynamic record. It raises the
Dynamic.RuntimeTypeError exception if the parsing failed. In the return type, Dynamic.void
denotes that the structure of the value is not yet statically known.

• Dynamic type checking expression dynamic exp as τ and dynamic patttern matching expression
dynamiccase. These expressions described in Section 13.1 are also useful for JSON type checking.
The following types are allowed as τ :

– Ordinary ML types such as basic types such as int, bool, and string; record types; list
types; and arbitrary combination of these. Only if the structure of the given JSON matches
with τ completely, the type cast succeeds.

– Partially dynamic record types of the form {l1:τ1, · · ·, ln:τn} Dynamic.dyn. Only if the
given JSON is a object that have at least labels l1, . . . , ln and the value of each label li can
be casted to τi, then the type cast succeeds.

– Completely dynamic type Dynamic.void Dynamic.dyn. The type cast to this type always
succeeds.

– Arbitrary nested combination of the above types.

• Obtaining a static view.

Dynamic.view : [’a#reify. ’a Dynamic.dyn -> ’a]

This function converts the statically known part of the given partially dynamic record to its corre-
sponding ML data structure. It raises the Dynamic.RuntimeTypeError exception if the argument
is of type Dynamic.void Dynamic.dyn.

• JSON printer.

Dynamic.toJson : [’a. ’a Dynamic.dyn -> string]

This function returns the string representation of the given JSON. The result includes all fields in
the given JSON regardless of the type instance of ’a.

As seen in the type of JSON data, it is allowed to use functions for dynamically-typed values and
reification with JSON data. Conversely, it is also allowed to apply these functions for partially dynamic
records to dynamically-typed values.

13.6 Examples of JSON programming

The following interactive session is an example of JSON program that reads a list of records written in
JSON.

val J = "[{n̈ame:̈J̈oe,̈ äge:̈21, g̈rade:̈1.1},"

^ "{n̈ame:̈S̈ue,̈ äge:̈31, g̈rade:̈2.0},"

^ "{n̈ame:̈B̈ob,̈ äge:̈41, g̈rade:̈3.9}]";

val J =

"[{"name":"Joe", "age":21, "grade":1.1},

{"name":"Sue", "age":31, "grade":2.0},

{"name":"Bob", "age":41, "grade":3.9}]" : string

fun getNames l = map #name l;

val getNames = fn : [’a#{name: ’b}, ’b. ’a list -> ’b list]

val j = Dynamic.fromJson J;

val j = _ : Dynamic.void Dynamic.dyn

13.6. EXAMPLES OF JSON PROGRAMMING 73

val vl = _dynamic j as {name:string, age:int, grade:real} list;

val vl =

[

{age = 21,grade = 1.1,name = "Joe"},

{age = 31,grade = 2.0,name = "Sue"},

{age = 41,grade = 3.9,name = "Bob"}

] : {age: int, grade: real, name: string} list

val nl = getNames vl;

val nl = ["Joe","Sue","Bob"] : string list

Let us look at a more practical example. Suppose that we intend to deal with the following JSON.

[

{"name":"Alice", "age":10, "nickname":"Allie"},

{"name":"Dinah", "age":3, "grade":2.0},

{"name":"Puppy", "age":7}

]

Let J be the JSON string of this. This is a heterogeneous list. While it is not able to cast such a list to
an ML list, we can see that every element in this list has at least name and age field of string and int
type, respectively. According to this view, we read this JSON as follows:

val j = Dynamic.fromJson J

val vl = _dynamic j as {name:string, age:int} Dynamic.dyn list

The type of vl is {name:string, age:int} JSON.dyn list, which means a list of partially dynamic
records. The static view of this list can be obtained by

val l = map Dynamic.view vl

Then, to obtain name values from the elements, for example, do the following:

val names = map #name l

We usually want to check whether or not a certain field exists in a partially dynamic record in the
list. We do this by performing the dynamic type check against each element in the list. For example,
suppose we want to get nickname if it exists, or get name otherwise. The following code achieve this:

fun getFriendlyName x =

_dynamiccase x of

{nickname = y:string, ...} => y

| _ : Dynamic.void Dynamic.dyn => #name (Dynamic.view x) val friendlyNames

= map getFriendlyName vl

The type of getFriendlyName is [’a#reify#{name : string}. ’a Dynamic.dyn -> string]. Note
that the combination of a polymorphic record type and partially dynamic type constitutes this type.
What does this type mean? Intuitively, from the perspective of JSON manipulation, one would say
that this seems similar to {name : string} Dynamic.dyn -> string. Strictly speaking, the meaning
of these two types are different. Latter one can take a JSON object only if exactly its name field is known
and thus any other fields must be unknown without further dynamic type checking. In contrast, first
one accepts JSON objects if at least its name field is known in spite of determination of any other fields.

Chapter 14

SML# feature: separate compilation

One major feature of SML# as a practical language is the support of true separate compilation that is
compatible with system development in C. In SML#, one can develop a large software system as follows.

1. Compile source files into object files.

2. Link object files and additional C object files and system libraries to generate an executable file.

Furthermore, SML# compiler can produce file dependency in the format of Makefile. Using these
features, SML# can be used with C to develop a large software efficiently and reliably. This chapter
outline how to use separate compilation of SML#.

14.1 Separate compilation overview

A standard step of separate compilation consists of the following steps.

1. Decompose the system into a set of compilation units. Each component cab be of any size and can
contain any sequence of SML# declarations. Here we suppose that we decompose the system into
part1 and part2.

2. For each decomposed component, define its interface. The interface is described in the interface
language we shall explain in Section 14.3. In our scenario of decomposing the system into part1

and part2, we first define their interface files part1.smi and part2.smi.

3. For each interface file, develop a source file that implements it. Each source file is independently
compiled to an object file.

In the above scenario, develop part1.sml and part2.sml for part1.smi and part2.smi, compile
them to generate part1.o and part2.o. Developing each of the source files and its compilation
can be done independently of the other source file. For example, even if part2 uses some functions
in part1, part2.sml can be compiled before writing part1.sml. In ML, type error detection
during compilation plays an important role in source file development. So the ability to separately
compiling each source file independently of any other source files are important feature in large
software development.

4. Link the set of object files with necessary libraries and external object files to generate an executable
file. For example, if part1 and part2 uses C files and libraries, then link part1.o and part2.o

with those compiled C files and libraries to generate an executable file.

A more advanced scenario can be the following.

1. Decompose the system into the part to be written in C and the part to be written in SML#.

2. For the C part, develop header files (.h files) and source files (.c files).

3. For the SML# part, develop interface files (.smi files) and source files (.sml files).

4. Create Makefile using the dependency analysis of SML#.

75

76 CHAPTER 14. SML# FEATURE: SEPARATE COMPILATION

5. Do make to compile and link the necessary files.

The SML# system itself is a large project including a few tools, all of which are written in C and SML#,
and developed in this scenario.

14.2 Separate compilation example

Following the simple scenario in the previous section, let us develop an Omikuji (Japanese written oracle
drawing) program as an example. Instead of asking Japanese sacred split, we use extremely good random
number generator. The system is divided into

• random: a random number generator, and

• main: the main part.

The fist step is to design interface files as follows.

• random.smi:

structure Random =

struct

val intit : int -> unit

val genrand : unit -> int

end

This interface file says that the implementing source file provide Random structure without using
any other files.

• main.smi:

_require "basis.smi"

_require "./random.smi"

This interface file says that it uses "basis.smi" (The Standard ML Basis Library) and random.smi,
and provide no resource.

Using these interface files, main.sml and random.sml are developed independently. main.sml can be
given as in Figure 14.1. This file can be compiled without any source file that implements random.smi,
and checks syntax and type errors by typing:

$ smlsharp -c main.sml

The -c switch instructs SML# compiler to compile the specified source file to an object file. The
compiler checks its syntax and types and if no error is detected then it produces main.o file. main.smi
is chosen as its interface file by default. A specific interface file can be specified by including the directive
interface filePath at the beginning of the source file.

Next，we develop random.sml. Development of a high quality random number generator requires
expert knowledge in algebraic number theory and careful coding. Here, instead of developing one from
scratch, we try to find some existing quality code. Among a large number of implementations, perhaps
Mersenne Twister is the best in its quality and efficiency. So we decide to use this algorithm, which is
available as a C source file mt19937ar.c.

Let us obtain the C source from the Internet by searching for Mersenne Twister or mt19937ar.c.
The file contains the following function definitions.

void init_genrand(unsigned long s);

void init_by_array(unsigned long init_key[], int key_length);

unsigned long genrand_int32(void);

long genrand_int31(void);

double genrand_real1(void);

double genrand_real2(void);

double genrand_real3(void);

double genrand_res53(void);

int main(void)

14.3. STRUCTURE OF INTERFACE FILES 77

Among them, main is a main function that test the algorithm. Since we are defining our executable, the
main function should be in the compiled object file of our top level source file main.sml. So we comment
out int main(void) function in the file. mt19937ar.c. All the others functions can be used from our
program. Here we decide to use the following two.

• void init genrand(unsigned long s) for initializing the algorithm with the seed length s, which
can be any non-negative integer.

• long genrand int31(void) for generating 31 bit unsigned (i.e. 32 bit non-negative) random num-
ber sequence.

The random.sml can then be defined as the following code that simply call these functions.

structure Random =

struct

val init = _import "init_genrand" : int -> unit

val genrand = _import "genrand_int31" : unit -> int

end

This source file can be compiled independently of other files by the following command.

$ smlsharp -c random.sml

In doing this, we compile Mersenne Twister (after commenting out its main function).

$ gcc -c -o mt.o mt19937ar.c

We now have all the object files for the program. We can link them to an executable file by specifying
the top-level interface file and the external object files referenced through import declarations.

$ smlsharp main.smi mt.o

SML# analyzes smi file，traverse all the interface files referenced from this file, make a list of object
files corresponding to the interface files, and then links all the object files with those specified in the
command line argument to generate an executable file.

14.3 Structure of interface files

An interface file describes the interface of a source file to be compiled separately. Its contents consists of
Require declarations and Provide declarations. Require declarations specifies the list of interface files
used in this compilation unit as a sequence of declarations of the following form.

_require smiFilePath

smiFilePath is an interface file (smi file) of other compile unit. Frequently used interface files can be
grouped together and given a name. SML# maintain a few of them. A useful example is basis.smi

which contain all the (mandatory) names (types, functions etc) defined in Standard ML Basis Library.
In order to make the basis library available, write the following at the beginning of its interface file.

_require "basis.smi";

Provide declarations describes the resources implemented in this compile unit. Resources corresponds
to those definable as SML# declarations, including the following.

• datatype definitions

• type definitions

• exception declarations

• infix declarations

• variable definitions

• module definitions

78 CHAPTER 14. SML# FEATURE: SEPARATE COMPILATION

fun main() =

let

fun getInt () =

case TextIO.inputLine TextIO.stdIn of

NONE => 0

| SOME s => (case Int.fromString s of NONE => 0 | SOME i => i)

val seed = (print "input a number of your choice (0 for exit)";

getInt())

in

if seed = 0 then ()

else

let

val _ = Random.init seed;

val oracle = Random.genrand()

val message =

" あなたの運勢は，" ^

(case oracle mod 4 of 0 => "大吉" | 1 => "小吉"| 2 => "吉"

| 3 => "凶")

^ "です．\n"

val message = print message

in

main ()

end

end

val _ = main();

Figure 14.1: Example of main.sml

queue.smi file：

_require "basis.smi"

structure Queue =

struct

datatype ’a queue = Q of ’a list * ’a list

exception Dequeue

val empty : ’a queue

val isEmpty : ’a queue -> bool

val enqueue : ’a queue * ’a -> ’a queue

val dequeue : ’a queue -> ’a queue * ’a

end

queue.sml file:

structure Queue =

struct

datatype ’a queue = Q of ’a list * ’a list

exception Dequeue

val empty = Q ([],[])

fun isEmpty (Q ([],[])) = true

| isEmpty _ = false

fun enqueue (Q(Old,New),x) = Q (Old,x::New)}

fun dequeue (Q (hd::tl,New)) = (Q (tl,New), hd)

| dequeue (Q ([],_) = raise Dequeue

| dequeue (Q(Old,New) = dequeue (Q(rev New,[]))

end

Figure 14.2: Example of interface file

14.4. OPAQUE TYPES 79

• functor definitions

Figure 14.2 is an example interface file queue.smi and its implementation queue.sml.
As seen in this example, Provide declarations in interface file resembles Standard ML signatures.

A big difference is that in provide declarations in an interface file, datatype and exception are not
specifications but they represent unique entities. datatype ’a queue and exception Dequeue declared
in queue.smi are treated as the generative type and exception in its implementation. As a result, they
corresponds to the same entity even if queue.smi is used in multiple interface files through require

declarations.

14.4 Opaque types

The principle underlying interface declaration are the following.

1. Define compile-time resources (static entities) such as datatype and exception themselves just
the same way as they will be defined in a source file.

2. Declare only the types of runtime resources such as functions and variables.

They are necessary and sufficient information to compile other source file that uses this interface file.
However, this principle alone cannot support ML’s information hiding through opaque signatures. For
example, in the previous interface file queue.smi, the ’a queue type is explicitly defined to be Q of ’a

list * ’a list and this information is open to the user of this interface file, but we often want to hide
this implementation details.

To solve this problem, the interface language introduces the following opaque type declarations.

type tyvars tyid (= typeRep) (* describe paranthesis as they are *)

eqtype tyvars tyid (= typeRep) (* describe paranthesis as they are *)

These declaration reveals to the compiler that the internal representation of tyid is typeRep but this
information is not available to the code that uses this interface file through require declaration. As
in signature, type declaration defines a type on which equality operation is not defined and eqtype

declaration defines a type with on which equality operation is define. typeRep is the type constructor
that implements the type tyid. For example, consider the following implementation:

type t1 = int

type t2 = int list

type ’a t3 = (’a * ’a) array

One can write the following in the interface file:

type t1 (= int)

type t2 (= list)

type ’a t3 (= array)

If the implementation type is either a record type, tuple type, or function type, then typeRep must be
{}, *, or ->, respectively. If the type is defined by datatype, then typeRep must be one of the following
according to the definition of its constructors:

• unit. The type consists only of a single constructor that has no argument.

• contag. The type consists only of more than one constructors with no argument.

• boxed. Otherwise.

For example，to make datatype ’a queue declaration in queue.smi, one can write the following.

type ’a queue (= boxed)

Furthermore, as in signature, interface file need not exhaustively list all the resources the implemen-
tation may define. Only those resources defined in the interface file become visible to the code that use
it through require declaration.

80 CHAPTER 14. SML# FEATURE: SEPARATE COMPILATION

14.5 Treatment of signatures

In Standard ML, in addition to resources explained in Section 14.3, signatures are also named resources.
For example，one should be able to provide QUEUE signature as well as Queue structure. In require
declaration in an interface file, signature files can be specified in the following syntax.

_require sigF ilePath

sigF ilePath is a path to a signature file. To understand this mechanism, let us review some properties
of Standard ML signatures.

• A signature may reference some types define in some other structures.

• A signature itself does not define any type.

To deal with this situation properly, SML# compiler treats require sigF ilePath declaration as follows.

• Evaluate the signature in the file sigF ilePath in the context generated by all the other Require
declarations.

• The signature declaration is inserted at the beginning of the source file that use this interface file
through require.

Figure 14.3 shows an interface file containing an opaque signature.

14.6 Functor support

SML# can separately compile functor into an object file, and can be used from other compilation unit
through require declaration. To provide a functor, write the following in its interface file.

functor id(signature) =

struct

(* the same as Provide declarations of structure *)

end

signature is a Standard ML signature. Below is an example of an interface file for binary search tree.

_require "basis.smi"

functor BalancedBinaryTree

(A:sig

type key

val comp : key * key -> order

end

) =

struct

type ’a binaryTree (= boxed)

val empty : ’a binaryTree

val isEmpty : ’a binaryTree -> bool

val singleton : key * ’a -> ’a binaryTree

val insert : ’a binaryTree * A.key * ’a -> ’a binaryTree

val delete : ’a binaryTree * key -> ’a binaryTree

val find : ’a binaryTree * A.key -> ’a option

end

In using functors in separate compilation, one should note the following.

• Functor is not a mechanism for separate compilation. In some existing practice of ML,
probably due to the lack of separate compilation, functors can be used to compile some modules
independently from the others. For example, if one write

14.6. FUNCTOR SUPPORT 81

queue-sig.sml file:

signature Queue =

sig

datatype ’a queue = Q of ’a list * ’a list

exception Dequeue

val empty : ’a queue

val isEmpty : ’a queue -> bool

val enqueue : ’a queue * ’a -> ’a queue

val dequeue : ’a queue -> ’a queue * ’a

end

queue.smi file:

_require "basis.smi"

_require "queue-sig.sml"

structure Queue =

struct

type ’a queue (= boxed)

exception Dequeue

val empty : ’a queue

val isEmpty : ’a queue -> bool

val enqueue : ’a queue * ’a -> ’a queue

val dequeue : ’a queue -> ’a queue * ’a

end

queue.sml file:

structure Queue : QUEUE =

struct

datatype ’a queue = Q of ’a list * ’a list

exception Dequeue

val empty = Q ([],[])

fun isEmpty (Q ([],[])) = true

| isEmpty _ = false

fun enqueue (Q(Old,New),x) = Q (Old,x::New)}

fun dequeue (Q (hd::tl,New)) = (Q (tl,New), hd)

| dequeue (Q ([],_) = raise Dequeue

| dequeue (Q(Old,New) = dequeue (Q(rev New,[]))

end

Figure 14.3: Example of interface file with signatures

82 CHAPTER 14. SML# FEATURE: SEPARATE COMPILATION

A.sml file:

structure A =

struct

...

end

B.sml file:

structure B =

struct

open A

...

end

then B.sml file directly depends on A.sml file. If one rewrite B.sml using a functor as below then
this dependency can be avoided.

B.sml file:

functor B(A:sig ... end) =

struct

open A

...

end

This is exactly what separate compilation achieves. A system such as SML# where a complete
separate compilation is supported, this form of functor usage is unnecessary and undesirable.

• Usage of functor incurs some overhead. Functors can take types as parameters and therefore
strictly more powerful than polymorphic functions. However, this type parameterization requires
the compiler to generate code that behaves differently depending on the argument types. The
resulting code inevitably incurs more overhead than the corresponding code with the type argument
predetermined (i.e. ordinary structures). The programmer who use functor should be aware of this
const and restrict functors in cases where the advanced feature of explicit type parameterization
is really required.

In the current version of SML# has the following limitation on the usage of functors.

• If a functor has a formal abstract type constructor with type arguments, only heap-allocated
internal representations (such as array, boxed, {}, ->, and *) can be applied to the formal type
constructor. The following example causes a compile error in SML#.

functor F(type ’a t) = struct end structure X = F(type ’a t = int);

(interactive):2.17-2.34 Error:

(name evaluation "440") Functor parameter restriction: t

14.7 Replications

An interface file describes resources themselves. So, for example, for a module of the form

structure Foo =

struct

structure A = Bar

structure B = Bar

...

end

one cannot write its interface as

structure Foo =

struct

structure A : SigBar

structure B : SigBar

14.8. TOP-LEVEL EXECUTION 83

...

end

The interface language mechanism so far describes forces us to repeat most of the contents of Bar twice.
To suppress this redundancy, the interface language allow replication declaration of the following form.

• structure id = path

• exception id = path

• datatype id = datatype path

• val id = path

If you know that in advance that two resources are replication of the same resources, then you can declare
them as replication using this mechanism in an interface file. For example, Bar structure is provided by
an interface file bar.smi and that you know that both A and B should be replications of Bar, then you
can simply write the following interface file.

_require "bar.smi"

structure Foo =

struct

structure A = Bar

structure B = Bar

...

end

14.8 Top-level execution

Execution of an SML# program is done by evaluating the top-level declarations. If a program consists
of a single file then this model is realized by generating the code for each declaration and concatenate
them in the order of declarations. However, a separately compiled program consisting of multiple files,
we have to decide the order of execution of declarations. SML# decides the order based on the following
policy.

1. The top-level declarations corresponding to the top-level .smi file, i.e. the file give as a command
line parameter to smlsharp command, are executed after the declarations corresponding to any
other .smi files. In what follows, we refer to this top-level as link top-level.

2. If a variable provided by A.sml is used in B.sml, the top-level of A.sml is executed before executing
that of B.sml.

3. If A.sml is not reachable from the link top-level through the provide-use relationship, the top-level
of A.sml is not executed (the compiler does not link A.o into the executable file).

Execution order of declarations respects the dependency of references of names. Note that the
reference relation is the actual relation generated by occurrences of long-ids in a program, and not the
relation generated by require declarations in .smi files.

There are two exceptions. One is the link top-level, whose top-level is always executed. Another is
the require declaration of the following form:

_require smiFilePath init

This forces the compiler to link the object file corresponding to smiFilePath and generate code executing
its toplevel. This form is only for special purpose; it had better not to abuse it.

Part III

Reference manual

85

Chapter 15

Introduction

This part defines the specification of SML# system, including the language, the library, the smlsharp

command, and its external interfaces. As we stated in Part I, SML#maintain the backward compatibility
to Standard ML. In addition to the definitions of the language syntax, the Definition of Standard ML
[5] defines the static and dynamic semantics of the language as formal derivation systems of semantic
judgments. Different from Standard ML as stated in the Definition, which is a self-contained “closed
system”, SML# is an open system that include direct C language interfaces and seamless integration of
SQL. At this moment, we do not have an appropriate means to formally define the semantics of such an
open system. So in this reference manual, we do not provide a formal definition of the static and dynamic
semantics; instead, we explain, in English, typing properties and the meanings of language constructs
whenever appropriate.

15.1 Notations

In the definitions, the following notations are used.

• Terminal symbols are written as "SML#" using a typewriter font.

• Non-terminal symbols are written as ⟨exp⟩ with angle brackets.

• (opt)? represents that opt is optional.

• For a syntax class ⟨x⟩ , the notation ⟨xList⟩ represents list of one of more ⟨x⟩ ’s separated by white
space, and ⟨xSeq⟩ denotes one of the following.

⟨xSeq⟩ ::= ⟨x⟩ (one element)
| (empty)
| (⟨x⟩ 1,· · ·, ⟨x⟩ n) (n-ary tuple)

87

Chapter 16

The SML# Structure

This chapter explains the language structure of SML#, the typing concept, and its evaluation model.

16.1 Programs in the interactive mode

An interactive mode program of SML# is a sequence of declarations, terminated by semicolon (;). The
following shows a simple interactive program session of SML#

$ smlsharp

SML# 4.0.0 ...

fun fact 0 = 1

> | fact n = n * fact (n - 1);

> val x = fact 10;

val fact = fn : int -> int

val x = 3628800 : int

and > are the first-line prompt character and the second-line prompt character, respectively. As
shown in this example, the SML# interactive compiler print the result of evaluation of the input program.

Declarations are divided into the core language declarations ⟨decl⟩ , which generates values such as
functions and records, and the module language declarations ⟨strDecl⟩ , which are named collections of
core language declarations.

⟨interactiveProgram⟩ ::= ;

| ⟨decl⟩ ⟨interactiveProgram⟩
| ⟨topdecl⟩ ⟨interactiveProgram⟩

• Core language declarations

The following shows core language declarations (⟨decl⟩) and simple examples.

⟨decl⟩ ::= ⟨infixDecl⟩ infix declaration
| ⟨valDecl⟩ val delaration
| ⟨valRecDecl⟩ val rec delaration
| ⟨funDecl⟩ function delaration
| ⟨datatypeDecl⟩ data type delaration
| ⟨typeDecl⟩ type alias delaration
| ⟨exceptionDecl⟩ exception delaration
| ⟨localDecl⟩ local declaration

89

90 CHAPTER 16. THE SML# STRUCTURE

Declaration kind Simple example
infix declaration infix 4 =

val declaration val x = 1

val rec declaration val rec f = fn x => if x = 0 then 1 else x * f (x - 1)

function declaration fun f x = if x = 0 then 1 else x * f (x - 1)

datatye declaration datatype foo = A | B

type declaration type person = {name:string, age:int}

exception declaration exception Fail of string

local declaration local val x = 2 in val y = x + x end

• Module language declarations

The following shows module language declarations (⟨strDecl⟩) and simple examples.

⟨topdecl⟩ ::= ⟨strDecl⟩ structure delaration
| ⟨sigDecl⟩ signature delaration
| ⟨functorDecl⟩ functor delaration
| ⟨localTopdecl⟩ local declaration

structure declaration

structure Version =

struct

val version = "2.0.0"

end

signature declaration

signature VERSION =

sig

val version :string

end

functor declaration

functor System(V:VERSION) =

struct

val name = "SML#"

val version = V.version

end

local declaration

local

structure V = Version

in

structure Release = struct

val version = V.version

val date = "2021-04-06"

end

end

16.1.1 Evaluation of core language declarations

Execution of an interactive program is done by evaluating a list of declaration sequentially. Evaluation
of a core language declaration has the effect of evaluating the components, such as expressions, contained
in the declaration, and binding the identifiers defined in the declaration to the values generated by the
evaluation of the components. Generated values are either static or dynamic.

Static values are compile-time value generated by the compiler. They are one of the following.

infix operator status This indicates that an identifier is parsed as an infix operator. It also has the
associatibity (right associative or left associative) and association strength (from 0 to 9).

constructor status This indicates that an identifier status is a data constructor. An identifier with
the constructor status only matches with the corresponding constructor in pattern marching.

type constructor Type constructors are newly defined types generated by datatype declarations. Para-
metric types with type parameters can be defined.

type Types specify a static property of a dynamic values produced by executing the corresponding
program fragment.

16.1. PROGRAMS IN THE INTERACTIVE MODE 91

The SML# compiler statically evaluates declarations and generates static values, and bind names
defined in the declarations to those static values. For declarations such as ⟨valDecl⟩ that implies program
execution, the compiler generates executable code, which when executed, constructs dynamic values at
runtime and binds names to those dynamic values.

Dynamic values are one of the following.

Built-in values Runtime data of built-in types defined in Chapter 18. They include atomic values,
lists, arrays, and vectors. For example, values of type int32 are 32-bit signed integers whose
representation is defined by the underlying machine architecture.

Function closures They are runtime representations of values of function types.

Data constructors They are built-in functions to construct datatype representations.

Exception closures They are built-in functions to construct exception values.

Records They are values of record and tuple types.

Datatype representation They are generated by data constructors defined in datatype declarations.

Exception values They are generated by exception constructors.

The following show a summary of the generated static and dynamic values for each of declarations.

declaration class static values bindings dynamic values bindings assigned to
infix declaration infix status variables, constructor names
val delaration types dynamic values corresponding to types variables
val rec delaration types function closures variables
function delaration types function closures variables
data type delaration type constructors type constructor names

constructor status data constructors data constructor names
type alias delaration type function type constructor names
exception delaration constructor status exception constructors exception constructor names
exception delaration depending on the contents depending on the contents depending on the contents

We outline declaration evaluation and the resulting value bindings below. The detailed syntax and
semantics of each of these declaration classes are given in Chapter 23.

⟨infixDecl⟩ This is a declaration of the form infix id. The identifier id is given infix operator property.
n is optional. The following shows a simple example.

infix 7 *;

infix 8 ^;

fun x ^ y = if y = 0 then 1 else x * x ^ (y - 1);

val ^ = fn : int * int -> int

val a = 4 * 3 ^ 2

val a = 36 : int

Since * and ^ has infix precedence 7 and 8, respectively, 4 * 3 ^ 2 is elaborated to *(4, ^ (3,2)).

⟨valDecl⟩ This is a declaration of the form val pat = exp. Evaluation is done by evaluating exp and
checking whether the resulting dynamic value matches pat. If it matches then variables in pat are
bound to the corresponding values of the result. The simplest example is the following variable
binding.

val x = 1;

val x = 1 : int

In this example, variable x is bound to the result of evaluating expression 1, namely static type
int and dynamic value 1.

92 CHAPTER 16. THE SML# STRUCTURE

val (x, y) = (1, 2);

val x = 1 : int

val y = 2 : int

The details of expressions ⟨exp⟩ and patterns are given in Chapter 19 and 20. ．

⟨valRecDecl⟩ Val declarations restricted to (mutually recursive) functions.

val rec even = fn x => if x = 0 then true else odd (x - 1)

> and odd = fn x => if x = 1 then true else odd (x - 1);

val even = fn : int -> bool

val odd = fn : int -> bool

In this declaration, each identifier is bound to the corresponding type and function value.

⟨funDecl⟩ This is for mutually recursive function definitions.

fun even x = if x = 0 then true else odd (x - 1)

> and odd x = if x = 1 then true else odd (x - 1);

val even = fn : int -> bool

val odd = fn : int -> bool

In this declaration, each identifier is bound to the corresponding type and function value.

⟨datatypeDecl⟩ This defines new mutually recursive type constructors.

datatype foo = A of int | B of bar and bar = C of bool | D of foo;

datatype bar = C of bool | D of foo

datatype foo = A of int | B of bar

D (A 3);

val it = D (A 3) : bar

Evaluation of this declaration generates two new type constructors (with no type parameter) foo
and bar and the identifiers foo and bar are bound to them. It also generate data constructors A,
B and C, D for foo and bar, respectively, and the identifiers to them. These identifiers are given
the constructor status.

As in the above explanation, in this manual, we generally identify type constructors such as foo
and data constructors such as A with their names foo and A.

⟨typeDecl⟩ This bind an identifier to a type or a type function.

type ’a foo = ’a * ’a;

type ’a foo = ’a * ’a

fun f (x:int foo) = x;

val f = fn : int * int -> int * int

Evaluation of this generates a type function that takes a type parameter represented by ’a and
returns a type ’a * ’a, and binds identifier foo to this type function. In the scope of this
declaration, τ foo is used as an alias of τ * τ .

⟨exceptionDecl⟩ This defines exception constructors.

exception Foo of int;

exception Foo of int

Evaluation of this declaration generates a new exception constructor with a parameter of type int.
In the scope of this declaration, the identifier foo is given the constructor status and is bound to
the exception constructor.

⟨localDecl⟩ Declarations between local and in are local until end.

16.1. PROGRAMS IN THE INTERACTIVE MODE 93

local

> val x = 2

> in

> val y = x + x

> end;

val y = 4 : int

The scope of the declaration val x = 2 is until end. The variable x is not visible from outside of
this local declaration and therefore only y is printed in the interactive session.

16.1.2 Evaluation of module language declarations

A structure declaration, the main component of the module language, is a mechanism to bundle a list of
declarations and gives it a name. Evaluation of a structure expression yields a static type environment
representing the static binding of the declarations, and a dynamic value environment representing the
dynamic binding of the declarations. The effect of evaluation of a structure declaration is to extend the
current type environment and the current value environment with the static and dynamic environment
obtained from the generated environments by prefixing the bound names in the environments with the
structure name.

For example，the structure expression

struct

val version = "4.0.0"

end

generates the type environment {version : string} and the runtime environment {version : "3.4.0"}.
Therefore the structure declaration

structure Version =

struct

val version = "4.0.0"

end

has the effect of extending the current type environment and the current runtime-environment with the
following binding of long names: {Version.version : string}, and {Version.version : "3.4.0"}.

A signature constraint can be specified to a structure expression. A signature statically constrains the
type environment generated by the structure. In addition to type constraints to variables, constraints of
type declarations can be specified. A structure expression with a signature constraint generates a type
environment that only contains those names that are specified in the signature.

A functor is a function that takes a structure and returns a structure. Different from functions in
the core language functor definitions are restricted to first-order and top-level.

We show evaluation of module language declarations in the interactive mode below. The detailed
syntax and semantics of each of these declaration classes are given in Chapter 24.

⟨strDecl⟩ This declaration defines a structure.

structure Version =

> struct

> val version = "4.0.0"

> end;

structure Version =

struct

val version = "4.0.0" : string

end

Evaluation of this declaration binds Version to a type environment representing the structure
containing version component, and long identifier Version.version to string type and the
dynamic value "4.0.0".

⟨sigDecl⟩ This declaration binds an identifier to a signature.

94 CHAPTER 16. THE SML# STRUCTURE

signature VERSION =

> sig

> val version : string

> end;

signature VERSION =

struct

val version : string

end

Evaluation of this declaration binds VERSION to the specified signature. Signatures describes types
of components of SML# structures.

⟨functorDecl⟩ This declaration defines a functor, which is a function taking a structure and returning a
structure.

functor System(V:VERSION) =

struct

val name = "SML#"

val version = V.version

end;

Evaluation of this declaration binds the identifier System to a functor that takes a structure of
VERSION signature and returns a structure containing name and version components.

⟨localTopdecl⟩ Declarations between local and in are local until end.

local

> structure V = Version

> in

> structure Release = struct

> val date = "2021-04-06"

> val version = V.version

> end

> end;

val Release =

struct

val date = "2021-04-06" : string

val version = "4.0.0" : string

end

The scope of the declaration structure V = Version is until end. The structure V is not visible
from outside of this local declaration and therefore only Release is printed in the interactive
session.

16.2 Programs in the separate compilation mode

A program in the separate compilation mode is a set of source files and their interface files. The contents
of a source file, denoted here as ⟨source⟩ , are given below.

⟨source⟩ ::= (⟨interfaceFileSpec⟩)? ⟨sourceProgram⟩
⟨interfaceFileSpec⟩ ::= interface " ⟨filePath⟩ "
⟨sourceProgram⟩ ::=

| ⟨decl⟩ ⟨sourceProgram⟩
| ⟨topdecl⟩ ⟨sourceProgram⟩

If there is no interface file specification ⟨interfaceFileSpec⟩ in a source file and there is a file of the
same name S.smi as that of the source file S.sml (except for its suffix) in the same directory, then that
file is implicitly specified as the interface file of the source file. ⟨filePath⟩ is a relative path. Regardless
of OS, / (slash) is used for directory separator.

The contents of an interface file, ⟨interface⟩ , consist of ⟨requireList⟩ that specifies the set of interface
file paths required for the source file, and ⟨provideList⟩ that specifies the set of declarations the source
file provides to the other compilation units.

16.2. PROGRAMS IN THE SEPARATE COMPILATION MODE 95

⟨interface⟩ ::= ⟨requireList⟩ ⟨provideList⟩

⟨requireList⟩ ::=
| _require (local)? ⟨interfaceName⟩ ⟨requireList⟩ (init)?
| _require (local)? ⟨sigFilePath⟩ ⟨requireList⟩ (init)?

⟨interfaceName⟩ ::= ⟨smiFilePath⟩
| ⟨librarySmiFilePath⟩

⟨provideList⟩ ::=
| ⟨provide⟩ ⟨provideList⟩

⟨provide⟩ ::= ⟨provideInfix⟩
| ⟨provideVal⟩
| ⟨provideType⟩
| ⟨provideDatatype⟩
| ⟨provideException⟩
| ⟨provideStr⟩
| ⟨provideFun⟩

⟨requireList⟩ specifies interface file names (file path or library name) of source files or signature file
paths referenced by the source file. local directive in a _require declaration indicates that the specified
interface file is only used inside of the source file and does not referenced in ⟨provideList⟩ . init is an
annotation indicating that the program corresponding to the specified interface must be executed and
precede the program that _requires it. ⟨provideList⟩ specifies the set of declarations the source file
provides to the other compilation units.

⟨smiFilePath⟩ , ⟨sigFilePath⟩ , and ⟨librarySmiFilePath⟩ are file paths relative to the file in which
_require is written. Regardless of OS, / (slash) is used for directory separators. If a path does not
begins with . (period) and the specified file does not exist, the compiler searches for the file from the
load path given in the command line.

SML# provides the following interface libraries.

library smi file name contents

basis.smi Standard ML Basis Library
ml-yacc-lib.smi yacc and lex tools
smlformat-lib.smi SMLFormat formatter generator
smlnj-lib.smi Standard ML of New Jersey library
ffi.smi C FFI support library
thread.smi Multithread library
reify.smi Dynamic typing library
smlunit-lib.smi SMLUnit tool

The following summarizes ⟨provide⟩ specifications corresponding to declarations.

• Correspondence between core declarations and their interfaces

declaration (⟨decl⟩) corresponding provide (⟨provide⟩)
⟨infixDecl⟩ ⟨provideInfix⟩
⟨valDecl⟩ ⟨provideVal⟩
⟨valRecDecl⟩ ⟨provideVal⟩
⟨funDecl⟩ ⟨provideVal⟩
⟨datatypeDecl⟩ ⟨provideData⟩
⟨typeDecl⟩ ⟨provideType⟩
⟨exceptionDecl⟩ ⟨provideException⟩
⟨localDecl⟩

• Correspondence between module delcarations and their interfaces

96 CHAPTER 16. THE SML# STRUCTURE

declaration (⟨topdecl⟩) corresponding provide (⟨provide⟩)
⟨strDecl⟩ ⟨provideStr⟩
⟨sigDecl⟩
⟨functorDecl⟩ ⟨provideFun⟩
⟨localTopdecl⟩

Signature files are directly referenced in the interface through _require ⟨sigFilePath⟩ .

We show simple examples below.

• Example 1 (Using the Standard ML Basis Library)

file code

hello.sml
val _ = print "Welcome to SML

＃\n"
hello.smi _require "basis.smi"

Compilation and execution

$ smlsharp hello.sml

$./a.out

Welcome to SML＃$

• Example 3 (separate compilation)

file code

hello.sml val _ = puts "Welcome to SML#"

hello.smi _require "puts.smi"

puts.sml
val puts = _import "puts" :

string -> int
puts.smi val puts : string -> int

Compilation and execution

$ smlsharp -c hello.sml

$ smlsharp -c puts.sml

$ smlsharp -o hello hello.smi

$./hello

Welcome to SML# $

16.3 Major Components of SML# Programs

Before defining the syntax and semantics of these declarations and interfaces, we define those of the
following elements that construct these declarations and interfaces.

Lexical structures The definition of keywords and identifiers (Chapter 17).

Expressions The major components of programs made from lexical components. They have static
types and generates dynamic values (Chapter 19).

Types Used for type annotations of expressions and identifiers and the definition of interfaces (Chapter
18).

Patterns Denoting the structure of values received by functions and value bindings. (Chapter 20).

Scoping rules The definition of scopes of identifiers and dynamic value bindings. (Chapter 21).

SQL expressions The expressions denoting SQL commmands that is seamlessly integrated into SML#.
Similarly to other expressions, they have polymorphic types and can be used with other expressions.
(Chapter 22).

Then, we define the syntax and semnatics of core declarations in Chapter 23 and those of module
declarations in Chapter 24.

Chapter 17

Lexical structure

This chapter defines the set of characters and the lexical structures used in SML#. Definitions of lexical
structures use standard notations for regular expressions.

17.1 Character set

Characters usable in the SML# language are extended ASCII characters from 0 to 255 (in decimal). Key
words and delimiters are among the characters from 0 through 127. Identifiers may ASCII characters
from 0 to 255, including 8-bit characters from 128 to 255, as far as they are not overlap with keywords
and delimiters. This rule allows the programmer to use UTF8 encoded Japanese (and other) character
string as identifiers. The following interactive session show example codes with Japanese identifiers.

$ smlsharp

SML# 4.0.0 ...

datatype メンバー =

> 研究員 of {氏名:string, 年齢:int, 学位:string}

> | 職員 of {氏名:string, 年齢:int};

datatype メンバー =

研究員 of {学位:string, 年齢:int, 氏名:string}

| 職員 of {年齢:int, 氏名:string}

研究員 {学位="Ph.D.", 年齢=21, 氏名="大堀"};

val it =

研究員 {学位 = "Ph.D.",年齢 = 21,氏名 = "大堀"} : メンバー

17.2 Lexical items

SML# lexical items consist of the following.

keywords The following are SML# keywords and they cannot be used as identifiers.

abstype and andalso as case datatype do else end eqtype exception fn fun functor

handle if in include infix infixr let local nonfix of op open orelse raise

rec set sharing sig signature struct structure then type val where while with

withtype () [] { } , : :> ; ... _ = => -> #

⟨alphaId⟩ defined in the identifier section does not contain these keywords.

SQL keywords The following are keywords used in SQL expressions and cannot be used as identifiers
within SQL expressions.

asc all begin by commit cross default delete desc distinct fetch first from

group inner insert into is join limit natural next not null offset only on

or order rollback row rows select set update values where

97

98 CHAPTER 17. LEXICAL STRUCTURE

These strings are not among the ⟨alphaId⟩ in the SQL expression that begins with the _sql

keyword introduced in Section 19 and defined in Chapter 22. SQL expressions are not expressions
in the definition of Standard ML, this restriction preserves the backward compatibility.

Extended keywords The following names started with _ are keywords used to represent SML# special
features. Since they are not lexical items in the definition of Standard ML, introducing them
preserves the backward compatibility.

__attribute__ _builtin _foreach _import _interface _join _dynamic _dynamiccase

_polyrec _require _sizeof _sql _sqlserver _typeof _use

Identifiers Identifiers are names used in programs. SML# has the following 7 classes of identifiers
defined below. Their classes are determined from their occurring context, so the same name can
be used in different identifiers.

name usage
⟨vid⟩ variables, data constructors
⟨lab⟩ record labels
⟨strid⟩ structure names
⟨sigid⟩ signature names
⟨funid⟩ functor names
⟨tycon⟩ type constructors
⟨tyvar⟩ type variables

これら識別子の構造は以下の通りである．

⟨vid⟩ ::= ⟨alphaId⟩ | ⟨symbolId⟩
⟨lab⟩ ::= ⟨alphaId⟩ | ⟨string⟩ | ⟨decimal⟩ | ⟨decimal⟩ _ ⟨alphaId⟩ (note *1)
⟨strid⟩ ::= ⟨alphaId⟩
⟨sigid⟩ ::= ⟨alphaId⟩
⟨funid⟩ ::= ⟨alphaId⟩
⟨tyvar⟩ ::= ’ ⟨alphaId⟩ | ’’ ⟨alphaId⟩
⟨tycon⟩ ::= ⟨alphaId⟩ | ⟨symbolId⟩

Note.

1. There are the following three kinds of record labels: character string labels（ ⟨alphaId⟩ or
⟨string⟩），integer labels(⟨decimal⟩), ordered character string labels([1-9][0-9]* _ ⟨alphaId⟩).
In SML#, record fields are sorted according to the ordering of their labels. Character string
labels are ordered by String.compare. Integer labels are ordered according to the integer
they represents. Ordered character string labels are order by the lexicographical pairing of
integer labels and character string labels.

The definition of these character classes are given below.

⟨alpha⟩ ::= [A-Za-z\127-\255]
⟨symbol⟩ ::= ! | % | & | $ | + | / | : | < | = | > | ? | @ | | ‘ | | | # | - | ^ | \

⟨alphaId⟩ ::= ⟨alpha⟩ (⟨alpha⟩ | [0-9] | ’ | _)* (Note 1)
⟨decimal⟩ ::= [1-9] [0-9]*
⟨symbolId⟩ ::= ⟨symbol⟩ * (Note 2)

Note.

1. The character class ⟨alphaId⟩ does not contain keywords. Furthermore, in SQL expressions
that begins with _sql, ⟨alphaId⟩ does not contain SQL keywords.

2. ⟨symbolId⟩ does not contain keywords. Therefore ==> is an instance of ⟨symbolId⟩ but => is
not.

17.2. LEXICAL ITEMS 99

Long identifiers For ⟨vid⟩ (variable names and constructor names) and ⟨strid⟩ (structure names), the
following long identifiers are defined.

⟨longVid⟩ ::= (⟨strid⟩ .)* ⟨vid⟩
⟨longTycon⟩ ::= (⟨strid⟩ .)* ⟨tycon⟩
⟨longStrid⟩ ::= (⟨strid⟩ .)* ⟨strid⟩

constant literals ⟨scon⟩ Syntax for constant literals are given below.

⟨scon⟩ ::= ⟨int⟩ | ⟨word⟩ | ⟨real⟩ | ⟨string⟩ | ⟨char⟩ Constant literals
⟨int⟩ ::= (~)?[0-9]+ Decimal integers

| (~)?0x[0-9a-fA-F]+ Hexadecimal integers

⟨word⟩ ::= 0w[0-9]+ unsigned decimal integers
| 0wx[0-9a-fA-F]+ unsigned hexadecimal integers

⟨real⟩ ::= (~)?[0-9]+ . [0-9]+ [Ee](~)?[0-9]+ Floating-point numbers
| (~)?[0-9]+ . [0-9]+
| (~)?[0-9]+ [Ee](~)?[0-9]+

⟨char⟩ ::= #" (⟨printable⟩ | ⟨escape⟩) " Character
⟨string⟩ ::= " (⟨printable⟩ | ⟨escape⟩)∗ " String
⟨printable⟩ ::= characters except for \ and "

⟨escape⟩ ::= \a The warning character (ASCII 7)
| \b Backspace (ASCII 8)
| \t Horizontal tab (ASCII 9)
| \n New line character (ASCII 10)
| \v Vertical tab (ASCII 11)
| \f Home feed (ASCII 12)
| \r Carriage return (ASCII 13)
| \^[\064-\095] Control character represented by [\064-\095]
| \\ The \ character
| \" The " character
| \ddd The character of decimal code ddd
| \f · · · f\ ignoring whitespace characters f · · · f
| \uxxxx The string of the UTF-8 character of hexadecimal code xxxx

Chapter 18

Types

This chapter defines the syntax for types and describes the built-in types.
Types are divided into monotypes (⟨ty⟩) and polytypes(⟨polyTy⟩). The syntax for mono types are

given below.

⟨ty⟩ ::= ⟨tyvar⟩ type variable names
| {(⟨tyrow⟩)?} record types
| ⟨ty1⟩ * · · · * ⟨tyn⟩ tuple types (n ≥ 2)
| ⟨ty⟩ -> ⟨ty⟩ function types
| (⟨tySeq⟩)? ⟨longTycon⟩ (parameterlized) datatypes
| (⟨ty⟩)

⟨tyrow⟩ ::= ⟨lab⟩ : ⟨ty⟩ (, ⟨tyrow⟩)? record field types

⟨tyvar⟩ are type variable names. As defined in Section 17.2, they are written as ’a，’foo or ’’a，
’’foo. The latter form are for those equality type variables, which range only over types that admit
equality. An type admits equality, called eqtype, is any type that does not contain function type
constructor and built-in types that does not admit equality. A user defined datatype is an eqtype if
it only contains eqtypes. For example, τ list defined below is an eqtype if τ is an eqtype.

datatype ’a list = nil | :: of ’a * ’a list

The function type constructor -> associates to the right so that int -> int -> int is interpreted
as int -> (int -> int).

⟨longTycon⟩ is a type constructor names defined by datatype declarations. Atomic types such as
int are type constructors without type parameters (⟨tySeq⟩). SML#4.0.0 supports the following built-in
atomic types and type constructors.

type constructor name description eqtype?
int 32 bit long signed integers Yes
int64 64 bit long signed integers Yes
int16 16 bit long signed integers Yes
int8 8 bit long signed integers Yes
intInf unbounded signed integers Yes
word 32 bit long unsigned integers Yes
word64 64 bit long unsigned integers Yes
word16 8 bit long unsigned integers Yes
word8 8 bit long unsigned integers Yes
real floating point numbers) No
real32 32 floating point numbers No
char characters Yes
string strings Yes
exn exceptions No
unit unit values (()) Yes
τ ref references (pointers) Yes
τ array arrays Yes
τ vector vectors τ が eq型ならば Yes

101

102 CHAPTER 18. TYPES

The unit type is distinguished from the empty record type {} as a different type. This is the
modification that is not backward-compatible to Standard ML.

The syntax for polytypes (⟨polyTy⟩) are given below.

⟨polyTy⟩ ::= ⟨ty⟩
| [⟨boundtyvarList⟩ . ⟨ty⟩]

| ⟨ty⟩ -> ⟨polyTy⟩
| ⟨polyTy⟩ * · · · * ⟨polyTy⟩
| { (⟨polyTyrow⟩)? }

⟨boundtyvarList⟩ ::= ⟨boundtyvar⟩ (, ⟨boundtyvarList⟩)?
⟨boundtyvar⟩ ::= ⟨tyvar⟩ ⟨kind⟩
⟨kind⟩ ::=

| #{ ⟨tyrow⟩ }

| # ⟨kindName⟩ ⟨kind⟩
⟨kindName⟩ ::= boxed | unboxed | reify | eq
⟨polyTyrow⟩ ::= ⟨lab⟩ : ⟨polyTy⟩ (, ⟨polyTyrow⟩)?

• [⟨boundtyvarList⟩ . ⟨ty⟩] is the polymorphic type that makes the scope of bounded type variables
⟨boundtyvarList⟩ explicitly.

• A bound type variable may have the following kind constraints ⟨kind⟩ . The record kind #{ ⟨tyrow⟩
} restricts the range of the bound type variable to record types that have at least fields indicated
by ⟨tyrow⟩ . The boxed kind restricts it to the type of heap-allocated values. The unboxed kind is
the complement of the boxed kind. The eq kind restricts it to eqtypes. The reify kind is just an
annotation that the type reification feature is required and therefore does not restrict the range of
the bound type variable.

The set of polytypes is the extension of the set of polytypes in the definition of Standard ML with
record polymorphism, overloading and rank-1 polymorphism.

The following examples use a rank-1 polytype.

fn x => (fn y => (x,y), nil);

val it = fn : [’a. ’a -> [’b. ’b -> ’a * ’b] * [’b. ’b list]]

In the interactive session, in addition to the above kinds, you may see the overload kind :: { ⟨tyList⟩
}, which restricts the range of the bound type variable to ⟨tyList⟩ . The current system restricts over-
loading to system defined primitives, and type variables with overload kind are not allowed in a user
program.

Chapter 19

Expressions

The syntax for expressions (⟨exp⟩) is hierarchically defined below using infix operator expressions
(⟨infix⟩), function application expressions (⟨appexp⟩), atomic expressions (⟨atexp⟩).

• expressions (top-level)

⟨exp⟩ ::= ⟨infix⟩
| ⟨exp⟩ : ⟨ty⟩
| ⟨exp⟩ andalso ⟨exp⟩
| ⟨exp⟩ orelse ⟨exp⟩
| ⟨exp⟩ handle ⟨match⟩
| raise ⟨exp⟩
| if ⟨exp⟩ then ⟨exp⟩ else ⟨exp⟩
| while ⟨exp⟩ do ⟨exp⟩
| case ⟨exp⟩ of ⟨match⟩
| fn ⟨match⟩
| _import ⟨string⟩ : ⟨cfunty⟩ importing C function
| ⟨exp⟩ : _import ⟨cfunty⟩ importing C function
| _sizeof(⟨ty⟩) size of type
| _dynamic ⟨exp⟩ as ⟨ty⟩ Dynamic type cast
| _dynamiccase ⟨exp⟩ of ⟨match⟩ case branches with dynamic type cast
| _sqlserver (⟨appexp⟩)? : ⟨ty⟩ SQL servers
| _sql ⟨pat⟩ => ⟨sqlfn⟩ SQL execution function
| _sql ⟨sql⟩ SQL query fragments

⟨match⟩ ::= ⟨pat⟩ => ⟨exp⟩ (| ⟨match⟩)? pattern matching

• infix operator expressions

⟨infix⟩ ::= ⟨appexp⟩
| ⟨infix⟩ ⟨vid⟩ ⟨infix⟩

• function application expressions

⟨appexp⟩ ::= ⟨atexp⟩
| ⟨appexp⟩ ⟨atexp⟩ left associative function applications
| ⟨appexp⟩ # { ⟨exprow⟩ } record field updates

• atomic expressions

103

104 CHAPTER 19. EXPRESSIONS

⟨atexp⟩ ::= ⟨scon⟩ constants
| (op)? ⟨longVid⟩ identifiers
| {(⟨exprow⟩)? } records
| (⟨exp1⟩ ,· · ·, ⟨expn⟩) tuples (n ≥ 2)
| () unit value
| # ⟨lab⟩ record field selector
| [⟨exp1⟩ ,· · ·, ⟨expn⟩] lists (n ≥ 0)
| (⟨exp1⟩ ;· · ·; ⟨expn⟩) sequential execution
| let ⟨declList⟩ in ⟨exp1⟩ ;· · ·; ⟨expn⟩ end local declarations
| _sql (⟨sql⟩) SQL query fragments
| (⟨exp⟩)

⟨exprow⟩ ::= ⟨lab⟩ = ⟨exp⟩ (, exprow)? record fields

The definitions for ⟨cfunty⟩ is given in Section 19.21 and those for ⟨sql⟩ and ⟨sqlfn⟩ are given in
Chapter 22.

The above hierarchical definition for expressions represents associatibity among expression construc-
tors. The associatibity of infix operator expressions ⟨infix⟩ are determined not by syntax but by the
infix operator declarations. In the following sections, we first define in the next (19.1) elaboration rules
of infix expressions. In the following sections, we define each of expression constructors and their types
in the order of associatibity.

19.1 Elaboration of infix expressions

The following infix declamations give identifiers in the ⟨vid⟩ class infix operator property.

infix (n)? ⟨vidSeq⟩
infixr (n)? ⟨vidSeq⟩

infix defines ⟨vidSeq⟩ as left associative infix operators and infixr defines ⟨vidSeq⟩ as right associative
infix operators. Optional integer (n)? (from 0 to 9) specifies association strength (with 9 the strongest).
If n is omitted then 0 is assumed. Declaration

nonfix ⟨vidSeq⟩

cancel infix operator property of identifiers ⟨vidSeq⟩ .
Infix expressions are converted to applications to tuples according to the association strength.

source result
⟨exp1⟩ ⟨vid⟩ ⟨exp2⟩ op ⟨vid⟩ (⟨exp1⟩ , ⟨exp2⟩)
⟨pat1⟩ ⟨vid⟩ ⟨pat2⟩ op ⟨vid⟩ (⟨pat1⟩ , ⟨pat2⟩)

The syntax, when appears in expressions and patters,

op ⟨vid⟩

cancel the infix status of ⟨vid⟩ . Therefore if the identifier foo has infix status, then the following two
code fragments are equivalent.

1 foo 2

op foo (1,2)

The following are implicitly declared in all the compilation unit and the interactive mode.

infix 7 * / div mod

infix 6 + - ^

infixr 5 :: @

infix 4 = <> > >= < <=

infix 3 := o

infix 0 before

The above hierarchical syntax with infix declarations determines the association strength of ex-
pressions. For example, record update expression (⟨exp1⟩ # { ⟨lab⟩ = ⟨exp2⟩ }) associates tightly than
strongest infix operators (those that are declared with infix 9), and expression constructs if ⟨exp⟩ then ⟨exp⟩ else ⟨exp⟩
and others associates weakly than weakest infix operators (those that are declared with infix 0.

19.2. CONSTANTS ⟨SCON⟩ 105

19.2 Constants ⟨scon⟩
Constant expressions (⟨scon⟩) are constant literals of types ⟨int⟩， ⟨word⟩， ⟨real⟩， ⟨string⟩， ⟨char⟩
defined in Section 17.2. Among them, literals of ⟨int⟩， ⟨word⟩，and ⟨real⟩ are overloaded, and their
types are determined by their context. If there is no contextual type restriction, then they have the
predefined default type.

class possible types the default type
⟨int⟩ int，int32，int64，int8，int16，intInf int

⟨word⟩ word，word32，word64，word8，word16 word

⟨real⟩ real，real32 real

Constant literals ⟨string⟩ and ⟨char⟩ have string type and char type, respectively.
These constant literals evaluate to the corresponding values determined in the underlying architecture.

The details of atomic value representations are defined in Chapter 29.
The following are simple examples involving overloaded constants.

val one = 1;

val one = 1 : int

val oneIntInf = 1 : intInf;

val oneIntInf = 1 : intInf

fun fact 0 = oneIntInf

> | fact n = n * fact (n - 1);

val fact = fn : intInf -> intInf

fact 30;

val it = 265252859812191058636308480000000 : intInf

0w100;

val it = 0wx64 : word

"smlsharp";

val it = "smlsharp" : string

#"S";

val it = #"S" : char

3.141592;

val it = 3.141592 : real

19.3 Long identifier expression ⟨longVid⟩
A long identifier ⟨longVid⟩ , appears as an expression, evaluates to the type and dynamic value that the
⟨longVid⟩ bound to in the current environment.

⟨longVid⟩ is of the form ⟨strId1⟩ . · · ·. ⟨strIdn⟩ . ⟨vid⟩ . Structure identifier ⟨strIdi⟩ corresponds to
a (nested) structure, according to the static scope rule defined in Chapter 21. As defined in Chapter 16,
each structure declaration has the effect of extending the current environment with the set of bindings of
long identifiers. The set of binding generated by the structure declaration corresponding to ⟨strIdi−1⟩
contains the binding obtained from the binding corresponding to ⟨strIdi⟩ by prefixing the structure
name ⟨strId⟩ to each of the long identifier.

The type and value of ⟨longVid⟩ are therefore the same as those that ⟨vid⟩ is bound to in the
structure corresponding to ⟨strIdn⟩ . If n = 0 then the type and value are those that ⟨vid⟩ is bound to
at the top-level. A simple example is shown below.

structure A = struct val x = 99 end;

structure A =

struct

val x = 99 : int

end

structure B = struct structure C = A end;

structure B =

struct

structure C =

106 CHAPTER 19. EXPRESSIONS

struct

val x = 99 : int

end

end

B.C.x;

val it = 99 : int

19.4 Record expression { ⟨lab1⟩ = ⟨exp1⟩ , . . ., ⟨labn⟩ = ⟨expn⟩ }
A record expression is a collection of pairs of labels ⟨labi⟩ and expressions ⟨expi⟩ .

A record expression is evaluated as follows. First, it is checked whether all of its labels are distinct.
If not, a type error occurs. Second, each expression ⟨expi⟩ is evaluated to a type ⟨tyi⟩ and value vi
in the order of their occurrences in the record expression. Finally, they are sorted in the order of label
strings and constitutes a record type

{ ⟨lab′1⟩ : ⟨ty′1⟩ , . . ., ⟨lab′n⟩ : ⟨ty′n⟩ }

and record value

{ ⟨lab′1⟩ = v′1, . . ., ⟨lab′n⟩ = v′n}

as the type and value of the record expression.
Therefore, for example, when

val x = {SML = (print "SML#";"SML#"), IS = (print " is ";" is "), SHARP = (print

" sharp!\n";" sharp!\n")}

is evaluated, it prints "SML# is sharp!" and then x is bound to the type and value like the following

val x = {IS = " is ", SHARP = " sharp!\n", SML = "SML#"} : {IS: string, SHARP:

string, SML: string}

19.5 Tuple expression (⟨exp1⟩ , · · ·, ⟨expn⟩) and unit expression
()

A tuple expression (⟨exp1⟩ , · · ·, ⟨expn⟩) is a syntactic sugar that is equivalent to a record expression
with numeric labels {1 = ⟨exp1⟩ , · · ·, n = ⟨expn⟩ }. Before it is evaluated, it is translated to its
corresponding record expression. In the interactive session of SML#, the type and value of records
whose labels are numerals are printed as tuples.

The unit type is the type of empty tuple. Different from the Definition of Standard ML, in SML#,
unit and the empty record type {} are distinct; the empty record type has the empty record kind.

The following shows an example of an interactive session using tuples:

val a = (1, 2);

val a = (1, 2) : int * int

val b = {1 = 1, 2 = 2};

val b = (1, 2) : int * int

type foo = {1: int, 2: int}

type foo = int * int

fun f (x : foo) = (x, x);

val f = fn : int * int -> (int * int) * (int * int)

val f = fn : int * int -> (int * int) * (int * int)

f a;

val it = ((1, 2), (1, 2)) : (int * int) * (int * int)

f b;

val it = ((1, 2), (1, 2)) : (int * int) * (int * int)

();

val it = () : unit

{};

val it = {} : {}

19.6. FIELD SELECTOR EXPRESSION # ⟨LAB⟩ 107

19.6 Field selector expression # ⟨lab⟩
A field selector is the field selection primitive function of the following type:

[’a#{ ⟨lab⟩ :’b}, ’b. ’a -> ’b]

This type indicates a polymorphic function that takes a record that contains at least ⟨lab⟩ field of type
’b and returns a value of type ’b. From this type, it is clear that a record field selector can be applied
to various record expressions that contains the specific label. The following shows an example:

#y;

val it = fn : [’a#{y: ’b}, ’b. ’a -> ’b]

#y x = 1, y = 2;

val it = 2 : int

fun YCord x = #y x;

val YCord = fn : [’a#{y: ’b}, ’b. ’a -> ’b]

#2;

val it = fn : [’a#{2: ’b}, ’b. ’a -> ’b]

#2 (1,2,3);

val it = 2 : int

A tuple type is a special case of record types and therefore a record field selector is also applicable to
tuples.

19.7 List expression [⟨exp1⟩ , · · ·, ⟨expn⟩]
A list expression is a sequence of expressions of elements that is separated by commas and surrounded
by [and]. When evaluated, a list expression yields the list type and a value of a list type. The list
type is defined as the following data type.

infixr 5 ::

datatype ’a list = op :: of ’a * ’a list | nil

A list expression is syntactically translated as follows.

source result
[⟨exp1⟩ ,· · ·, ⟨expn⟩] ⟨exp1⟩ :: · · · :: ⟨expn⟩ :: nil

(0 ≤ n)

From this translation, every element expression in a list expression must have the same type τ ,
and the type of a list expression is ty list, and the value of the expression is a data of the form
::(v1, ::(v2,· · · ::(vn,nil)· · ·)).

The following shows an example.

[1, 2, 3, 4];

val it = [1, 2, 3, 4] : int list

[fn x => x, fn x => x + 1];

val it = [fn, fn] : (int -> int) list

[];

val it = [] : [’a. ’a list]

As seen in the example, the empty list, [], has a polymorphic type.

19.8 Sequential execution expression (⟨exp1⟩ ; · · ·; ⟨expn⟩)
This is the expression that executes from ⟨exp1⟩ to ⟨expn⟩ in this order and returns the type and value
of the last expression. Evaluation of SML# expressions contains side-effects in general. This expression
is usually used to control side-effects. The following shows an example.

108 CHAPTER 19. EXPRESSIONS

val x = ref 1;

val x = ref 1 : int ref

fun inc () = (x := !x + 1; !x);

val inc = fn : unit -> int

inc();

val it = 2 : int

inc();

val it = 3 : int

ref, :=, and ! in this example are builtin primitives for reference types described in Section 19.20.

19.9 Local declaration expression let ⟨declList⟩ in ⟨exp1⟩ ;· · ·; ⟨expn⟩ end

A let expression let ⟨declList⟩ in ⟨exp1⟩ ;· · ·; ⟨expn⟩ end allows you to introduce local declarations
that are valid only in expressions ⟨exp1⟩ ;· · ·; ⟨expn⟩ . This expression is evaluated as follows.

1. Each declaration in ⟨declList⟩ is evaluated sequentially and adds the resulting environment to the
current environment.

2. Under the augmented environment, expressions ⟨exp1⟩ ;· · ·; ⟨expn⟩ are evaluated in this order.

3. The type and value of the last expression is those of this entire expression.

19.10 Function application expression ⟨appexp⟩ ⟨atexp⟩
Atomic expressions we have introduced so far are the smallest units of expressions that includes delimiters
in their own syntax. Expressions are usually constructed by combining those atomic expressions with
expression constructors. The most tightly connected expression constructor is function applications.
Since SML# inherits the traditions of lambda calculus, the syntax of function applications is ⟨appexp⟩
⟨atexp⟩ , which is just a sequence of function expression ⟨appexp⟩ and argument expression ⟨atexp⟩ . As
seen in this syntax, function applications are left-associative. In the last example, #name f("joe", 21)

is interpreted as ((#name f) ("joe", 21)) and therefore causes a type error.

val f = fn x => fn y => fn z => (x,y,z);;

val f = fn : [’a. ’a -> [’b. ’b -> [’c. ’c -> ’a * ’b * ’c]]]

f 1 2 (3,4);

val it = (1,2,(3,4)) : int * int * (int * int)

fun f (x,y) = {name=x,age=y};

val f = fn : [’a, ’b. ’a * ’b -> age: ’b, name: ’a]

#name (f ("joe", 21));

val it = "joe" : string

#name f("joe", 21);

(interactive):5.0-5.6 Error:

(type inference 028) operator and operand don’t agree

operator domain: ’BCUJ#{name: ’BCUI}

operand: [’a, ’b. ’a * ’b -> {age: ’b, name: ’a}]

19.11 Field update expression ⟨appexp⟩ # { ⟨exprow⟩ }

This is the expression that produces a new record obtained by updating the record denoted by ⟨appexp⟩
with fields specified in { ⟨exprow⟩ }. The type of this expression is same as that of ⟨appexp⟩ . The
following shows an example.

{x = 1, y = 2} # {x = 2};

val it = {x = 2, y = 2} : {x : int, y : int}

As seen in the following example, this expression has polymorphic type with respect to records.

19.12. TYPE CONSTRAINT EXPRESSION ⟨EXP⟩ : ⟨TY⟩ 109

fun incX r = r # {x = #x r + 1};

val incX = fn : [’a#{x: int}. ’a -> ’a]

incX {x = 1, y = 2};

val it = {x = 2, y = 2} : {x : int, y : int}

19.12 Type constraint expression ⟨exp⟩ : ⟨ty⟩
This expression annotates the type ⟨ty⟩ to the expression ⟨exp⟩ . The type of ⟨exp⟩ must be either same
as or more general than ⟨ty⟩ . The following shows an example.

[] : int list;

val it = [] : int list

1 : intInf;

val it = 1 : intInf

fn x => x : int;

val it = fn : int -> int

fn x => x : ’a -> ’a;

val it = fn : [’a. (’a -> ’a) -> ’a -> ’a]

As seen in the last example, ⟨ty⟩ may contain type variables. Type variables in a type annotation
are never instantiated. Unless there exists an explicit declaration of such type variables, the scope of
type variables is the whole of the inner-most val declaration in which the type variables occur. See
Section 23.1 for the type variable declarations and their scopes.

19.13 Boolean expressions ⟨exp1⟩ andalso ⟨exp2⟩ and ⟨exp1⟩ orelse ⟨exp2⟩
The boolean type is predefined as follows:

datatype bool = false | true

The name of data constructors usually begins with an capital letter, these two constructors are exceptions
of such a convention.

For any two expressions ⟨exp1⟩ and ⟨exp2⟩ of bool type, the following constructs are provided.

• Logical conjunction： ⟨exp1⟩ andalso ⟨exp2⟩
It evaluates ⟨exp1⟩ at first. If the value of ⟨exp1⟩ is true, then it evaluates ⟨exp2⟩ and returns
its value as the result of the entire expression. Otherwise, the value of this expression is false. In
this case, ⟨exp2⟩ is not evaluated.

• Logical disjunction： ⟨exp1⟩ orelse ⟨exp2⟩
It evaluates ⟨exp1⟩ at first. If the value of ⟨exp1⟩ is false, then it evaluates ⟨exp2⟩ and returns
its value as the result of the entire expression. Otherwise, the value of this expression is true. In
this case, ⟨exp2⟩ is not evaluated.

Since it may ignore the second expressions, these operations are provided as language constructs, not
functions.

These syntaxes are left-associative and in the same precedence. Therefore,

false andalso true orelse false

is interpreted as (false andalso true) orelse false and hence is evaluated to false.
Other operations on bool type are provided as functions. For example,

not : bool -> bool

19.14 Exception handling expression ⟨exp⟩ handle ⟨match⟩
This expression catches an exception raised during evaluation of expression ⟨exp⟩ . ⟨match⟩ is of the
form

110 CHAPTER 19. EXPRESSIONS

⟨pat1⟩ => ⟨exp1⟩
| · · ·
| ⟨patn⟩ => ⟨expn⟩

that indicates the sequence of pairs of a exception pattern and expression to be evaluated if the raised
exception is matched with the pattern.

Each pattern ⟨pati⟩ must includes an exception constructor and therefore be of exception type exn.
The type of every expression ⟨expi⟩ must be identical to that of ⟨exp⟩ . This expression is evaluated as
follows.

• ⟨exp⟩ is evaluated at first. If this evaluation is normally finished, its value is the value of this
entire expression.

• If an exception is raised during the evaluation, it tries to match the exception with each pattern
from ⟨pat1⟩ to ⟨patn⟩ . If it a match succeeds, it binds variables in ⟨pat⟩ i to corresponding
parameters of the exception object and evaluates ⟨expi⟩ . The value of ⟨expi⟩ is the value of this
entire expression.

• If the exception does not match with any pattern, the exception is propagated to the outer expres-
sion surrounding this expression.

19.15 Exception expression raise ⟨exp⟩
This expression raises the given exception. ⟨exp⟩ must be of exception type exn. The type of this
expression depends on the context; if there is no restriction on types, this exception has a polymorphic
type ’a.

This expression evaluates ⟨exp⟩ to an exception and raise it. Therefore, this expression does not
have any value.

19.16 Conditional expression if ⟨exp1⟩ then ⟨exp2⟩ else ⟨exp3⟩
This is for conditional branches. ⟨exp1⟩ must be of bool type. The type of ⟨exp2⟩ and ⟨exp3⟩ must be
same. Under these restrictions, this entire expression have the same type as ⟨exp2⟩ .

This is evaluated as follows. ⟨exp1⟩ is evaluated at first. If its value is true, ⟨exp2⟩ is evaluated and
the resulting value is the value of the entire expression. Otherwise, ⟨exp3⟩ is evaluated and the resulting
value is the value of the entire expression.

19.17 While expression while ⟨exp1⟩ do ⟨exp2⟩
This is for imperative iterations. ⟨exp1⟩ must be of bool type. The type of this expression is unit. This
expression iterates the evaluation of ⟨exp2⟩ while ⟨exp1⟩ is evaluated to true. If ⟨exp1⟩ is evaluated to
false, it returns ().

19.18 Case expression case ⟨exp⟩ of ⟨match⟩
This expresses general conditional branches on the value of ⟨exp⟩ . ⟨match⟩ is of the form

⟨pat1⟩ => ⟨exp1⟩
| · · ·
| ⟨patn⟩ => ⟨expn⟩

where each ⟨pati⟩ is a pattern containing data constructors and ⟨expi⟩ is the expression to be evaluated
if ⟨pati⟩ is matched against the value of ⟨exp⟩ .

Each pattern ⟨pati⟩ is a data pattern consisting of constructors and variables, as described in Chap-
ter 20. This set of patterns must satisfy the following restrictions:

• All variables occurring in a pattern must be distinct.

• Every pattern must have the same type as the type of ⟨exp⟩ .

19.19. FUNCTION EXPRESSION FN ⟨MATCH⟩ 111

• For any i such that 2 lei ≤ n, ⟨pati⟩ must not be redundant. In other words, the set of data
covered by ⟨pati⟩ must not be a subset of the union of the sets of data covered by ⟨pat1⟩ , . . .,
⟨pati−1⟩ .

For example, the following violates the third rule.

fn x => case x of (X, 1, 2) => 1 | (1, X, 2) => 2 | (1, 1, 2) => 3;

(interactive):6.8-6.65 Error: match redundant and nonexhaustive

(X, 1, 2) => ...

(1, X, 2) => ...

--> (1, 1, 2) => ...

Under these restrictions, this entire expression has the same type as each expression ⟨expi⟩ .
This case expression is evaluated as follows. It tries to match the value of ⟨exp⟩ with each pattern

from ⟨pat1⟩ to ⟨patn⟩ in this order. For the first matched pattern ⟨pati⟩ , it binds variables in ⟨pati⟩
to their corresponding part of the value and evaluates ⟨expi⟩ to the result value. If no pattern matches
with the value, it raises Match exception.

19.19 Function expression fn ⟨match⟩
This is for the anonymous function indicated by ⟨match⟩ . ⟨match⟩ is of the form

⟨pat1⟩ => ⟨exp1⟩
| · · ·
| ⟨patn⟩ => ⟨expn⟩

that indicates pairs of an argument pattern and its corresponding function body.

The type of each pair of a pattern and expression ⟨pati⟩ =¿ ⟨expi⟩ is calculated as follows: first,
the type ⟨tyi⟩ of ⟨pati⟩ is calculated; second, under the environment extended with variables in the
pattern, the type ⟨ty′i⟩ of ⟨expi⟩ is calculated; and finally, the two types are combined into a function
type ⟨tyi⟩ -> ⟨ty′i⟩ . The type of this entire expression is ⟨ty⟩ -> ⟨ty’⟩ that is obtained by unifying the
types of the matching pairs. The value of this function is the function closure consisting of the current
value environment and the function expression itself.

19.20 Builtin types and builtin primitives

Among the set of built-in types, exception type (exn) is manipulated by handle and raise expressions
defined in section 19.14. There is no primitive functions for the unit type (unit). All the other built-in
types are manipulated by built-in primitive functions through function application.

Values of built-in types other than reference type (’a ref) and array types (’a array) are ordinary
values in a standard functional language semantics, and their built-in primitive functions are those that
take values and return values.

Values of reference types (’a ref) and array types (’a array) are pointers to mutable memory
blocks, and their built-in primitive function may have side effect of destructive memory update.

For values of type ⟨ty⟩ ref, the following built-in primitive functions are provided.

ref : ⟨ty⟩ -> ⟨ty⟩ ref

! : ⟨ty⟩ ref -> ⟨ty⟩
:= : ⟨ty⟩ ref * ⟨ty⟩ -> unit

infix 3 :=

ref ⟨exp⟩ creates a reference, i.e. a pointer to a memory block containing a value denoted by ⟨exp⟩ .
! ⟨exp⟩ dereferences the pointer and return the stored value. ⟨exp⟩ 1 := ⟨exp⟩ 2 destructively updates
the memory block pointed to by the denotation of ⟨exp⟩ 1 with the value denoted by ⟨exp⟩ 2.

The built-in primitive functions for any other types, including ⟨ty⟩ array, are provided by the
following structures of the library defined in Chapter 25. General structure includes the reference
primitives and defines exceptions that may raised by built-in primitives.

112 CHAPTER 19. EXPRESSIONS

builtin type structure signature
int8 Int8 INTEGER
int16 Int16 INTEGER
int Int, Int32 INTEGER
int64 Int64 INTEGER
intInf IntInf INTINF
word8 Word8 WORD
word16 Word16 WORD
word Word, Word32 WORD
word64 Word64 WORD
real32 Real32 REAL
real Real, Real64 REAL
char Char CHAR
string String STRING
τ array Array ARRAY
τ vector Vector VECTOR
τ ref, exn General GENERAL

The set of built-in primitive functions for a built-in type can be displayed by evaluating a struc-
ture replication declaration of the structure that implements the built-in type, as seen in the following
example.

structure X = Int;

structure X =

struct

type int = Int32.int

val * = <builtin> : int * int -> int

val + = <builtin> : int * int -> int

val - = <builtin> : int * int -> int

val < = <builtin> : int * int -> bool

val <= = <builtin> : int * int -> bool

val > = <builtin> : int * int -> bool

val >= = <builtin> : int * int -> bool

val abs = <builtin> : int -> int

val compare = fn : int * int -> General.order

val div = <builtin> : int * int -> int

val fmt = fn : StringCvt.radix -> int -> string

val fromInt = fn : int -> int

val fromLarge = fn : intInf -> int

val fromString = fn : string -> int option

val max = fn : int * int -> int

val maxInt = SOME 2147483647 : int option

val min = fn : int * int -> int

val minInt = SOME 2147483648 : int option

val mod = <builtin> : int * int -> int

val precision = SOME 32 : int option

val quot = <builtin> : int * int -> int

val rem = <builtin> : int * int -> int

val sameSign = fn : int * int -> bool

val scan = fn

: [’a. StringCvt.radix

-> (’a -> (char * ’a) option) -> ’a -> (int * ’a) option]

val sign = fn : int -> int

val toInt = fn : int -> int

val toLarge = fn : int -> intInf

val toString = fn : int -> string

val ~ = <builtin> : int -> int

end

19.21. STATIC IMPORT EXPRESSION: _IMPORT ⟨STRING⟩ : ⟨CFUNTY⟩ 113

19.21 Static import expression: _import ⟨string⟩ : ⟨cfunty⟩
This expression allows you to use C functions as SML# functions. The meaning of each component is
as follows:

• ⟨string⟩ : the name of the C function. This is the name that linker recognizes as an external symbol
name.

• ⟨cfunty⟩ : the type of the C function. It must be of the following form.

C function type: ⟨cfunty⟩
⟨cfunty⟩ ::= (⟨cfunattr⟩)? ⟨argTyList⟩ -> ⟨retTyOpt⟩
⟨argTyList⟩ ::= (⟨argTy⟩ ,. . ., ⟨argTy⟩ (, ⟨varArgs⟩)?) (multiple arguments)

| ⟨argTy⟩ (only one argument)
| () (no argument)

⟨retTyOpt⟩ ::= ⟨retTy⟩
| () (void type in C)

callback function type: ⟨argfunty⟩
⟨argfunty⟩ ::= (⟨cfunattr⟩)? ⟨retTylist⟩ -> ⟨argTyOpt⟩
⟨retTyList⟩ ::= (⟨retTy⟩ ,. . ., ⟨retTy⟩ (, ⟨varRets⟩)?) (multiple arguments)

| ⟨retTy⟩ (only one argument)
| () (no argument)

⟨argTyOpt⟩ ::= ⟨argTy⟩
| () (void type in C)

interoperable type: ⟨interoperableTy⟩
⟨interoperableTy⟩ ::= (⟨tySeq⟩)? ⟨longTycon⟩ (interoperable types only. See below for details)

argument type from SML# to C: ⟨argTy⟩
⟨argTy⟩ ::= ⟨argTy⟩ * · · · * ⟨argTy⟩ (types of pointers to a structure)

| { ⟨argTyRow⟩ } (types of pointers to a structure)
| ⟨tyvar⟩ (boxed kind only)
| ⟨interoperableTy⟩
| ⟨argfunty⟩ (callback function argument types)

⟨argTyRow⟩ ::= ⟨lab⟩ : ⟨argTy⟩ (, ⟨argTyRow⟩)? (⟨lab⟩ must begin with ⟨decimal⟩)

return type from C to SML#: ⟨retTy⟩
⟨retTy⟩ ::= ⟨interoperableTy⟩

| ⟨tyvar⟩ (boxed kind only)

variable-length argument type specification: ⟨varArgs⟩ and ⟨varRets⟩
⟨varArgs⟩ ::= ... (⟨argTy⟩ ,. . ., ⟨argTy⟩)

⟨varRets⟩ ::= ... (⟨retTy⟩ ,. . ., ⟨retTy⟩)

C function attributes: ⟨cfunattr⟩
⟨cfunattr⟩ ::= __attribute__((⟨attr⟩ ,. . ., ⟨attr⟩))
⟨att⟩ ::= cdecl | stdcall | fastcc | pure | fast

⟨cfunty⟩ indicates the type of the C function in SML#’s type names and type notation. ⟨interoperableTy⟩ ,
the type names for C functions, must satisfy both of the following:

1. ⟨interoperableTy⟩ は以下のいずれかでなければならない．

• Interoperable atomic types: int, int8, int16, int64, word, word8, word16, word64, real,
real32, char, or string.

• The types of C pointers: codeptr, ⟨interoperableTy⟩ ptr, or unit ptr.

• The types of C pointers: ⟨tyvar⟩ ptr (ただし ⟨tyvar⟩ must be of either boxed or unboxed
kind).

114 CHAPTER 19. EXPRESSIONS

• The types of size: ⟨ty⟩ size.

• Array types: ⟨interoperableTy⟩ array, ⟨interoperableTy⟩ vector, or ⟨interoperableTy⟩ ref.

• Polymorphic array types: ⟨tyvar⟩ array, ⟨tyvar⟩ vector, or ⟨tyvar⟩ ref (ただし ⟨tyvar⟩
must be of either boxed or unboxed kind).

• An alias of one of the above types defined by a type declaration. (⟨tySeq⟩)? ⟨longTycon⟩
must be expanded to one of the above types. If an alias type occurs as an ⟨interoperableTy⟩
in the context of ⟨argTy⟩ , (⟨tySeq⟩)? ⟨longTycon⟩ may be expanded to an tuple or record
type that can be regarded as an ⟨argTy⟩ .

2. Neither string, array, vector, nor ref may occur as the type of values that would be passed
from C to SML# or be overwritten by a C function. In other words, these types must not occur as

• ⟨interoperableTy⟩ in the context of ⟨retTy⟩ , and
• the type parameter of array, ref, and ptr type.

以上の条件を満たす ⟨interoperableTy⟩ は，その型名から自然に類推される Cの型に相当する．対応を
以下に示す．

⟨interoperableTy⟩ 対応する Cの型
int and its family signed integer of the same size
word and its family unsigned integer of the same size
real double

real32 float

char char

string const char *

codeptr pointer to a function
τ ptr pointer to τ
unit ptr void * or pointer to an incomplete type
τ size size_t

τ array pointer to the beginning of an array of τ
τ vector pointer to the beginning of a vector of τ
τ ref pointer to an one-element array of τ

Note that the size of int and word is always 32 bits. In almost of all modern operating systems,
SML#’s int is identical to C’s int, whereas they are not identical in some systems whose int is not 32
bits.

⟨argTy1⟩ * · · · * ⟨argTyn⟩ and { ⟨lab1⟩ : ⟨argTy1⟩ , · · ·, ⟨labn⟩ : ⟨argTyn⟩ } of ⟨argTy⟩ corresponds
to the type of pointers to a const structure whose members are of type ⟨argTy1⟩ , · · ·, ⟨argTyn⟩ in the
order of ⟨decimal⟩ of labels. If all ⟨argTy⟩ i are identical, it also corresponds to a pointer to the beginning
of an const array of n elements of ⟨argTy⟩ i.

If and only if a C function acts like a parametric polymorphic function from the perspective of SML#
programs, it is allowed to use type variables as a C function’s argument or return type. For example, an
identical function in C

void *id(void *x) { return x; }

is allowed to be imported like this:

val ’a#boxed id = _import "id" : ’a -> ’a

Another example is printf function that prints an arbitrary pointer value.

val ’a#boxed printPtr = _import "printf" : (string,...(’a)) -> int

The following C function attributes are available:

cdecl The C function follows the standard calling convention of C functions on the target platform.
This is the default if no calling convention is specified through function attributes.

stdcall The C function follows stdcall calling convention on Windows platforms.

fastcc The C function follows fastcc calling convention provided by LLVM.

19.22. DYNAMIC IMPORT EXPRESSION: ⟨EXP⟩ : _IMPORT ⟨CFUNTY⟩ 115

pure The C function is pure in the sense of SML#. In other words, C functions of this attribute does
not perform any memory update and I/O, and its return value is decided only from the list of
arguments. This attribute affects the optimization of the SML# compiler.

fast The C function returns very quickly. It neither execute SML# code through callbacks nor pause
the thread execution. The SML# compiler generates efficient invocation code for such functions.
Note that, if a C function of this attribute either consumes much time or pause a thread execution,
garbage collection would be suspended and consequently all threads would be suspended.

The type of this expression is the SML# function type corresponding to the type specified in ⟨cfunty⟩ .
The correspondence is defined as follows.

C function type SML# function type
(⟨argTy⟩ 1, . . ., ⟨argTy⟩ n (⟨varArgs⟩)?) -> ⟨retTy⟩ ⟨argTy⟩ 1 * · · · * ⟨argTy⟩ n (* ⟨varArgs⟩)? -> ⟨retTy⟩

() in the argument or return type appear as unit in the SML# type. ⟨interoperableTy⟩ , ⟨tyvar⟩ ,
and ⟨*⟩ appear in the SML# type without modification. ⟨argfunty⟩ is interpreted similarly.

The value of this expression is the SML# function that calls the C function specified in ⟨string⟩ .
As long as the C function type specification is correct, this function can be used similarly to ordinary
SML# functions.

19.22 Dynamic import expression: ⟨exp⟩ : _import ⟨cfunty⟩
Similarly to the static import expression, this imports a function pointer obtained by dynamic linking
as an SML# function. The type of ⟨exp⟩ must be codeptr. When evaluating this expression, ⟨exp⟩ is
evaluated to an function pointer. If the function pointer points to a C function of the type indicated by
⟨cfunty⟩ , the value of this expression is the SML# function that calls the C function. Otherwise, the
value of this expression is undefined.

19.23 Size expression _sizeof(⟨ty⟩)
This is a constant expression denoting the size (in bytes) of the values of type ⟨ty⟩ . The type of this
expression is ⟨ty⟩ size and its value is an integer indicating the number of bytes.

The size expressions are usually used to call polymorphic C functions. For example, the following
is the import expression that imports memcpy in the C standard library for copying the first element of
arrays:

val ’a#unboxed memcpy =

_import "memcpy" : (’a array, ’a vector, ’a size) -> unit ptr

This function is called in the following way:

fun ’a#unboxed copy (a : ’a array, v) =

if Array.length a > 0 andalso Vector.length v > 0

then memcpy (a, v, _sizeof(’a))

else ()

19.24 Dynamic type cast expression _dynamic ⟨exp⟩ as ⟨ty⟩
This expression performs dynamic type cast of dynamically-typed value ⟨exp⟩ to ⟨ty⟩ . The type of
⟨exp⟩ must be τ Dynamic.dyn for some τ . The type of this expression is ⟨ty⟩ .

To evaluate this expression, ⟨exp⟩ is evaluated and the dynamically-typed value v is obtained. The
value of this expression depends on the structure of v and ⟨ty⟩ . The rule of dynamic type cast is the
following:

• When ⟨ty⟩ is Dynamic.void Dynamic.dyn, the value of this expression is v.

• When ⟨ty⟩ is τ Dynamic.dyn for some tau, if v has a view of τ (a substructure of v can be extracted
as a value of τ), the value of this expression is v. Otherwise, the Dynamic.RuntimeTypeError

excepstion is raised.

116 CHAPTER 19. EXPRESSIONS

• When ⟨ty⟩ does not include Dynamic.dyn, the type of v is identical to ⟨ty⟩ , the value of this expres-
sion is the value obtained by type-casting v to ⟨ty⟩ . Otherwise, the Dynamic.RuntimeTypeError

excepstion is raised.

• When ⟨ty⟩ includes Dynamic.dyn as its substructure, the above rules are applied recursively on
the structure of v and ⟨ty⟩ .

For example, suppose the following list of records:

val r = Dynamic.dynamic [{name = "Joe", age = 21}, {name = "Sue", age = 31}];

The following casts are correct:

_dynamic r as {name:string, age:int} list;

_dynamic r as {name:Dynamic.void Dynamic.dyn, age:int} list;

_dynamic r as Dynamic.void Dynamic.dyn;

_dynamic r as Dynamic.void Dynamic.dyn list;

_dynamic r as {name:string, age:int} Dynamic.dyn list;

_dynamic r as {name:string} Dynamic.dyn list;

_dynamic r as {name:string, age:int} list Dynamic.dyn;

_dynamic r as {age:int} list Dynamic.dyn;

Note that v is not always a data structure that is typable in ML. For example, suppose the following
heterogeneous list:

val l = Dynamic.fromJson

"[{\"name\":\"Joe\", \"age\":21},\

\{\"name\":\"Sue\", \"grade\":2.0},\

\{\"name\":\"Robert\", \"nickname\":\"Bob\"}]";

The following casts are correct:

_dynamic l as Dynamic.void Dynamic.dyn;

_dynamic l as Dynamic.void Dynamic.dyn list;

_dynamic l as {name:string} Dynamic.dyn list;

_dynamic l as {name:string} list Dynamic.dyn;

_dynamic l as {name:Dynamic.void Dynamic.dyn} Dynamic.dyn list;

To use this expression in the separate compilation mode, "reify.smi" must be _required.

19.25 Case branch expression with dynamic type cast _dynamiccase ⟨exp⟩ of ⟨match⟩
This expresses general conditional branches on the dynamically-typed value of ⟨exp⟩ . ⟨match⟩ is of the
form:

⟨pat1⟩ => ⟨exp1⟩
| · · ·
| ⟨patn⟩ => ⟨expn⟩

The type of each pattern may differ from each other. Variable patterns and anonymous patterns occurring
in ⟨pati⟩ must be type-annotated. In addition, the set of patterns must satisfy the following restriction:

• When categorizing the set of patterns by their types, for each set of patterns of the same type, the
set of patterns must satisfy the same condition as the case expression.

For example, the following is redundant on int patterns and therefore violates the rule.

fn x => _dynamiccase x of x:int => "int" | x:real => "real" | 0:int => "zero";

(interactive):1.8-1.76 Error: match redundant

x => ...

--> 0 => ...

19.25. CASE BRANCH EXPRESSIONWITH DYNAMIC TYPE CAST _DYNAMICCASE ⟨EXP⟩ OF ⟨MATCH⟩ 117

This expression is evalated as follows. It tries to match the dynamically-typed value v of ⟨exp⟩ with
each pattern from ⟨pat1⟩ to ⟨patn⟩ in this order. Before trying matching with a pattern, v is casted
to the type of the pattern in the same way as the _dynamic expression. For the first matched pattern
⟨pati⟩ , it binds variables in ⟨pati⟩ to their corresponding part of the value and evaluates ⟨expi⟩ to the
result value. If no dynamic type cast succeeds, it raises the Dynamic.RuntimeTypeError exception. If
no pattern matches with the value, it raises the Match exception.

To use this expression in the separate compilation mode, "reify.smi" must be _required.

Chapter 20

Patterns and Pattern Matching

Patterns ⟨pat⟩ describe structures of values, and are used to bind variables values through pattern
matching mechanism, built-in val-bind declarations (valBind)23.1, function declarations (funDecl)23.2,
case expressions，fn expression，and handle expressions.

When evaluated, pattern matching generates static type environment at compile time, and dynamic
value environment at runtime. These environments are used to added to the evaluation environment for
the expressions and declarations in the scope of the pattern.

Syntax of Patterns is given below.

• top-level pattern

⟨pat⟩ ::= ⟨atpat⟩
| (op)? ⟨longVid⟩ ⟨atpat⟩ data structure
| ⟨pat⟩ ⟨vid⟩ ⟨pat⟩ data structure (infix operator form)
| ⟨pat⟩ : ⟨ty⟩ pattern with type constraint
| ⟨vid⟩ (: ⟨ty⟩)? as ⟨pat⟩ layered pattern

• atomic patterns

⟨atpat⟩ ::= ⟨scon⟩ constant
| _ anonymous pattern
| ⟨vid⟩ variable and constructor
| ⟨longVid⟩ constructor
| {(⟨patrow⟩)? } record pattern
| () unit type constant
| (⟨pat1⟩ ,· · ·, ⟨patn⟩) tuples (n ≥ 2)
| [⟨pat1⟩ ,· · ·, ⟨patn⟩] list (n ≥ 0)
| (⟨pat⟩)

⟨patrow⟩ ::= ... anonymous field
| ⟨lab⟩ = ⟨pat⟩ (, ⟨patrow⟩)? record fields
| vid(: ⟨ty⟩)? (as ⟨pat⟩)? (, ⟨patrow⟩)? label and variable

The following subsections define for each pattern ⟨pat⟩ , its type ⟨ty⟩ , matching values, and the re-
sulting type environment. The dynamic environment generated at runtime corresponds to the generated
type environment and it binds identifiers to the matched values.

Constant pattern: ⟨scon⟩ They are the same the constant expressions defined in 19.2. They have the
corresponding types, match the same constant values, and generate the empty type environment.

Anonymous pattern:_ This has arbitrary type determined by the context, matches any value, and
generates the empty type environment.

119

120 CHAPTER 20. PATTERNS AND PATTERN MATCHING

identifier pattern: ⟨vid⟩ If the identifier is defined as a constructor, then it has the type of the
constructor, matches the constructor, and generate the empty type environment.

If the identifier is not defined or defined as a variable, then it has arbitrary type ⟨ty⟩ determined by
the context, matches any value of type ⟨ty⟩ , and generate the type environment { ⟨vid⟩ : ⟨ty⟩ }.

The following shows simple examples.

SML# 4.0.0 (2021-04-06) for x86_64-pc-linux-gnu with LLVM 11.1.0

val A = 1

val A = 1 : int

fn A => 1;

val it = fn : [’a. ’a -> int]

datatype foo = A;

datatype foo = A

fn A => 1;

val it = fn : foo -> int

datatype foo = A of int;

datatype foo = x of int

fn A => 1;

(interactive):12.3-12.3 Error:

(type inference 039) data constructor A used without argument in pattern

long identifier: ⟨longVid⟩ If the long identifier is defined as a constructor, then it has the type of the
constructor, matches the constructor, and generate the empty type environment. It is an error if the
identifier is not defined as a constructor or defined as a constructor with an argument. The following
shows simple examples.

structure A = struct datatype foo = A | B of int val C = 1 end;

structure A =

struct

datatype foo = A | B of int

val C = 1 : int

end

val f = fn A.A => 1;

val f = fn : A.foo -> int

val g = fn A.B => 1;

(interactive):3.11-3.13 Error:

(type inference 046) data constructor A.B used without argument in pattern

val h = fn A.C => 1;

(interactive):4.11-4.13 Error: (name evaluation "020") unbound constructor: A.C

A.B is a constructor with an argument and A.C is a variable, function declarations g and h result in
errors.

record pattern: ⟨{(⟨patrow⟩)? }⟩ The pattern {} without record fields has the unit type, matches
the value (), and generate the empty type environment.

If it has of the form ⟨lab1⟩ : ⟨ty1⟩ ,. . ., ⟨labn⟩ : ⟨tyn⟩，with non-empty record fields, there are two
cases according to the record field pattern ⟨patrow⟩ . Let Γ be the type environment generated by the
set of patterns in the fields.

1. Monomorphic record pattern, i.e. the case where the anonymous field ... is not contained. It has
the (monomorphic) record type { ⟨lab1⟩ : ⟨ty1⟩ ,. . ., ⟨labn⟩ : ⟨tyn⟩ }, matches any records contain-
ing all the fields that matches the record field patterns ⟨patrow⟩ , and generate Γ.

2. Polymorphic record pattern, i.e. the case where the anonymous field ... is contained. It has
the polymorphic record type ’a#{ ⟨lab1⟩ : ⟨ty1⟩ ,. . ., ⟨labn⟩ : ⟨tyn⟩ } with the record kind of the
field types of ⟨patrow⟩ , matches any records containing all the fields that matches the record field
patterns ⟨patrow⟩ , and generate Γ. The polymorphic type of this entire pattern can be instantiated
with any record types having the kind.

121

record field pattern: ⟨patrow⟩

• Anonymous field pattern : ...．It indicates that matching records may contains more fields than
the specified fields.

• Field pattern : ⟨lab⟩ = ⟨pat⟩ (, ⟨patrow⟩)?. Let the filed type and the generated type environment
of (, ⟨patrow⟩)? be ⟨lab1⟩ : ⟨ty1⟩ ,. . ., ⟨labn⟩ : ⟨tyn⟩ , and Γ. Let the type and the generated type
environment of the pattern ⟨pat⟩ be ⟨ty⟩ and Γ0. If the label ⟨lab⟩ is different than any labels
⟨lab1⟩ ,. . ., ⟨labn⟩ , then the type and the generated type environment of the entire pattern are
⟨lab⟩ : ⟨ty⟩ , ⟨lab1⟩ : ⟨ty1⟩ ,. . ., ⟨labn⟩ : ⟨tyn⟩，and Γ0 ∪ Γ. It is a type error if the label ⟨lab⟩ is
one of ⟨lab1⟩ ,. . ., ⟨labn⟩ .

• variable as label pattern：vid(: ⟨ty⟩)? (as ⟨pat⟩)? (, ⟨patrow⟩)?．
This is converted to the following field pattern before evaluation.

vid = vid(: ⟨ty⟩)? (as ⟨pat⟩)? (, ⟨patrow⟩)?．

The generated static environment and the matching dynamic value are the same as the transformed
record pattern. The following shows simple examples.

val f = fn {x:int as 1, y} => x + y;

(interactive):33.8-33.34 Warning: match nonexhaustive

{x = x as 1, y = y} => ...

val f = fn : {x: int, y: int} -> int

val g = fn {x = x:int as 1, y = y} => x + y;

(interactive):34.8-34.37 Warning: match nonexhaustive

{x = x as 1, y = y} => ...

val g = fn : {x: int, y: int} -> int

f {x = 1, y = 2};

val it = 3 : int

g {x = 1, y = 2};

val it = 3 : int

Tuple pattern:(⟨pat1⟩ ,· · ·, ⟨patn⟩) This is converted to the monomorphic record pattern

{1= ⟨pat1⟩ ,· · ·,n= ⟨patn⟩ }.

The generated static environment and the matching dynamic value are the same as the transformed
record pattern. The following shows simple examples.

val f = fn (x,y) => 2 * x + y;

val f = fn : int * int -> int

val g = fn {1=x, 2=y} => 2 * x + y;

val g = fn : int * int -> int

f 1=1, 2=2;

val it = 4 : int

g (1,2);

val it = 4 : int

List pattern:[⟨pat1⟩ ,· · ·, ⟨patn⟩] This is converted to the following nested list data structure pattern:

⟨pat1⟩ :: · · · :: ⟨patn⟩ :: nil

The generated static environment and the matching dynamic value are the same as the transformed
constructor application pattern. The following shows simple examples.

val f = fn [x,y] => 2 * x + y;

(interactive):24.8-24.26 Warning: match nonexhaustive

:: (x, :: (y, nil)) => ...

val f = fn : int list -> int

122 CHAPTER 20. PATTERNS AND PATTERN MATCHING

val g = fn (x::y::nil) => 2 * x + y;

(interactive):25.8-25.32 Warning: match nonexhaustive

:: (x, :: (y, nil)) => ...

val g = fn : int list -> int

f (1::2::nil);

val it = 4 : int

g [1,2];

val it = 4 : int

Data structure pattern:(op)? ⟨longVid⟩ ⟨atpat⟩ If ⟨longVid⟩ is bound to a constructor C of type of
the form ⟨ty1⟩ -> ⟨ty2⟩，then it has type ⟨ty2⟩ and generates a type constructor generated by ⟨atpat⟩ .
This pattern matches a data structure of the form C(v) if the subterm v matches ⟨atpat⟩ .

Data structure patter in infix form ⟨pat1⟩ ⟨vid⟩ ⟨pat2⟩ is syntactically converted to op ⟨vid⟩ (⟨pat1⟩ , ⟨pat2⟩)
before evaluation. The type and type environment being generated and the matching dynamic value are
the same as those of converted pattern.

Typed pattern: ⟨pat⟩ : ⟨ty⟩ If pattern ⟨pat⟩ has type ⟨ty1⟩ ad type environment Γ0, and ⟨ty1⟩ and
⟨ty⟩ unifies under type substitution S, then this pattern has type S(⟨ty⟩) and type environment S(Γ0).
This pattern matches a value of type S(⟨ty⟩) that matches pattern ⟨pat⟩ .

Layered pattern: ⟨vid⟩ (: ⟨ty⟩)? as ⟨pat⟩ If the pattern ⟨pat⟩ : ⟨ty⟩ has type ⟨ty′⟩ and a type
environment Γ then this pattern has type ⟨ty′⟩ and a type environment Γ ∪ {x : ⟨ty ′⟩ }. It matches a
dynamic value that the pattern ⟨pat⟩ : ⟨ty⟩ matches.

Chapter 21

Scope rules for identifier

This chapter defines the static scope rules for names used in programs.
As defined in Section 17.2, identifiers are used as names of the following seven classes.

identifier name class
⟨vid⟩ variable and constructor names
⟨strid⟩ structure name
⟨sigid⟩ signature name
⟨funid⟩ functor name
⟨tycon⟩ type constructor name
⟨tyvar⟩ type variable name
⟨lab⟩ record label

Among them, type variable names have the syntax ’..., and are distinguished from the other classes
of names. All the other names overlap one another. For example, A can be used as a name of any of
the classes other than type variable name. As defined in Chapter 21，the syntax is defined so that the
name class of identifier occurrence is uniquely determined. Furthermore, these name classes are managed
as separate name spaces, and same identifier can be used as names of different classes. The following
example shows usage of the same identifier A as different names.

(* 1 *) val A = {A = 1}

(* 2 *) type ’A A = {A: ’A}

(* 3 *) signature A = sig val A : int A end

(* 4 *) functor A () : A = struct val A = {A = 1} end

(* 5 *) structure A : A = A()

(* 6 *) val x = A.A

(* 7 *) val y = A : int A

The first occurrence of A in line 7 refers to the variable defined in line 1 and the second occurrence of A
refers to the type constructor defined in line 2. The first occurrence of A in line 6 refers to the structure
defined in line 5.

Names other than record labels are defined by program constructs and referenced. The following are
the program constructs involving name definitions.

1. Interface files in separate compilation. ProvideList ⟨provideList⟩ in the interface file define
names. For example, the interface file containing the following declarations

_require "myLibrary.smi"

val x : int

datatype foo = A of int | B of bool

defines variable name x, data constructor names A,B，and type constructor name foo.

2. Structure declaration. The structure name and the set of long names obtained from the set
of long names defined in the structure by prefixing the structure name are defined. For example,
if the structure S define a set of long names L then a declaration structure S = S defines the
structure name S and the set of long names {S.path | path ∈ L}.

123

124 CHAPTER 21. SCOPE RULES FOR IDENTIFIER

3. Functor declaration. The functor name and the names in the argument specification are defined.
For example, functor F(type foo) = · · · defines functor name F and type constructor name foo.

4. Type alias declaration. The type constructor name and the argument type variable names are
defined. For example, type foo = · · · defines type constructor (without type parameter) name
foo.

5. Datatype declaration. The type constructor name, the argument type variable names and the
data constructor names are defined. For example, datatype ’a foo = A of int | B of bool

defines type constructor name foo，argument type variable name ’a，and data constructor names
A，B. ．

6. Exception declarations. Exception constructor names are defined. For example, exception E

defines exception constructor (without argument) name E.

7. Val declaration．The variables occurring in the bound pattern are defined. For example, if x is
not defined as a data constructor, val x = 1 defines variable name x.

8. Function declaration．Function names and variables occurring in argument patterns are defined.
For example, if x is not defined as a data constructor in the occurring context, then fun f x = 1

defines variable name f.

9. fn expression．The variables occurring in argument patterns are defined. For example, if x is
not defined as a data constructor in the occurring context, then fn x => x defines variable name
f.

10. case expression．The variables occurring in case patterns are defined. For example, if x is not
defined as a data constructor in the occurring context, then case y of A x => x defines variable
name x.

11. SQL expression．SQL expressions that begins with _sql may contain variable definitions. They
are defined in Chapter 22.

These defined names have their scopes (the extents where the defined names can be referenced). These
scopes of defined names are nested according to the inductively defined syntax. As a block-structured
language in the Algol family, SML# adopts static scoping rules, under which definition and reference
relation is determined at compile time, and new definition hides the old definition of the same name in
the syntax introduced by the definition.

In the following, we list the static scopes introduced by scope delimiting syntactic constructs. The
actual scope of a name is the parts of the static scope of its defining syntactic construct that exclude
the inner static scopes of the same name of the same class.

• Separate compilation unit.

A separate compilation unit is a single source file ⟨srcFule⟩ .sml.
The scope of the names defined in a top-level declaration of ⟨srcFile⟩ .sml is the rest of the file.

An interface file reference from a source file also defines names. Without explicit _interface

declaration in a source file ⟨srcFile⟩ .sml, the file ⟨srcFile⟩ .sml in the same directory is implicitly
referenced as its interface file. The scope of the names defined by the reference to an interface file
⟨smiFilePath⟩ .smi from a source file ⟨srcFile⟩ .sml is the entire source file. The name defined by
a reference to an interface file ⟨smiFilePath⟩ .smi is the set of all names declared in the interface
files required by _require declarations in ⟨smiFilePath⟩ .smi.

• Structure construction : struct ⟨decl⟩ end.

The scope of a name defined in a top-level declaration in ⟨decl⟩ is the rest of its declaration
occurrence of ⟨decl⟩ .

• Local declaration : local ⟨decl1⟩ in ⟨decl2⟩ end.

The scope of a name defined in ⟨decl1⟩ is the rest of its declaration occurrence in ⟨decl1⟩ and the
entire ⟨decl2⟩ . The scope of a name defined in ⟨decl2⟩ is the rest of its declaration occurrence in
⟨decl2⟩ .

125

• Let expression : let ⟨decl⟩ in ⟨exp⟩ end.

The scope of a name defined in ⟨decl1⟩ is the rest of its declaration occurrence in ⟨decl⟩ and ⟨exp⟩ .

• Function declaration.

It has the following syntax.

fun ⟨id⟩ ⟨pat1,1⟩ · · · ⟨pat1,n⟩ = ⟨exp1⟩
...

| ⟨id⟩ ⟨patm,1⟩ · · · ⟨patm,n⟩ = ⟨expm⟩

The scope of the function name ⟨id⟩ is the list of ⟨exp1⟩ to ⟨expm⟩ . The scope of names in each
pattern ⟨pati,j⟩ is the corresponding expression ⟨expi⟩ .

• Function expression.

It has the following syntax.

fn ⟨pat1⟩ => ⟨exp1⟩ | · · · | ⟨patn⟩ => ⟨expm⟩

The scope of a name defined in a pattern ⟨pati⟩ is the corresponding expression ⟨expi⟩ .

• Case expression.

It has the following syntax.

case exp of ⟨pat1⟩ => ⟨exp1⟩ | · · · | ⟨patn⟩ => ⟨expm⟩

The scope of a name in each pattern ⟨pati⟩ is the corresponding expression ⟨expi⟩ .

Chapter 22

SQL Expressions and Commands

SML# includes database queries compliant to the standard SQL as SML# expressions. The SQL
queries and their fragments are first-class citizens; therefore, SQL queries as well as SML# expressions
have SML# types and are typechecked under the type system of SML#. In addition, SQL queries can be
freely combined with any other SML# constructs as long as their types are consistent. For example, you
can construct SQL query fragments as data structures, keep them in variables or function arguments,
and make a complete SQL query by combining them at runtime.

22.1 SQL Types

22.1.1 SQL Basic Types

Except for NULL, the following SML# types corespond to SQL basic types:
SML#’s basic types corresponding SQL types
int, intInf, word integer types
bool BOOLEAN type of SQL:99 (feature ID T031)
char CHAR(1) type
string TEXT or VARVHAR type
real double-precision floating point types
real32 single-precision floating point types

In addition to SML# basic types, the following types are defined for the interoperation with SQL:
SML#’s types corresponding SQL types
SQL.numeric NUMERIC type (decimals of maximum precision)
SQL.decimal DECIMAL type (alias of NUMERIC)

The concrete correspondence between SML# and SQL types depend on the selection of database
engines. See Section 22.8.1 for details of the type correspondence for each database engines.

SQL’s NULL corresponds to SML#’s NONE of option type. Expressions that may evaluate to
NULL, such as references to columns without the NOT NULL constraint, have the option type of one
of the above basic types.

22.1.2 The Type of SQL Logical Expressions

SQL.bool3 is the SML# type of the SQL boolean expressions, which consists of comarison and logical
operators. This SQL.bool3 type is intoduced just for the typechecking of SQL queries in SML# and
thus it does not correspond to any SQL type.

SML# distinguishes the types of boolean expressions SQL.bool3 and boolean values bool. This is
due to the historical confusion of the SQL standards on dealing with truth values. Traditionally, the
SQL’s truth value is a 3-valued boolean consiting of true, false, and unknown, which are not first-class
citizens (they cannot be stored in any table, for example). Therefore, there is no literal denoting truth
values. The first-class boolean value has been introduced in SQL99 as an optional feature (feature ID
T031). However, the optional feature has been criticized since this optional specification includes serious
inconsistencies against the SQL core features. Consequently, almost all of RDBMS vendors have not
supported the BOOLEAN type. Even after a few decades since SQL99 had shipped out, no popular
RDBMS except for PostgreSQL supports the BOOLEAN type.

127

128 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

To avoid misunderstanding and incompatibility due to the confusion, SML# enforces the type dis-
tinction between boolean expressions and values. Thus, boolean literal true and false cannot be used
as boolean expressions, and vice versa. See also Section 22.4.2 for boolean literals, and Section 22.4.6
for boolean expressions.

22.1.3 Types for SQL Tables and Schema

SML#’s record and list types are associated with the structures of SQL’s tables, views, and schema.
SQL tables and views corresponds to the type of a list of a record whose field names are column names
and field types are column types. If a column is not defined with the NOT NULL constraint, the type
of the column in SML# is the option type of one of the basic types. For example, the structure of

CREATE TABLE foo (bar INT, baz TEXT NOT NULL);

is represented by the following SML# type:

{bar : int option, baz : string} list

As seen in the above example, the constraints that means “it is not NULL”, such as the NOT NULL
and PRIMARY KEY constraints, are represented in SML# types and therefore typechecked at compile-
time. Any other SQL constraints are not reflected in SML# types and are checked at run-time when an
SQL query is executed in a database server.

SQL schema are represented in a record type, each field of which represents the name and structure
of each table. For example, the SQL schema

CREATE TABLE employee (id INT PRIMARY KEY, name TEXT NOT NULL,

age INT NOT NULL, deptId INT, salary INT);

CREATE TABLE department (deptId INT PRIMARY KEY, name TEXT NOT NULL);

is represented as follows in SML#:

{

employee : {id : int, name : string, age : int,

deptId : int option, salary : int option} list,

department : {deptId : int, name : string} list

}

22.1.4 Types for SQL Queries and Their Fragments

Each category of SQL queries and their subexpressions has a different type in SML#. The following
table shows the correspondence between the syntax categories of SQL and SML# types:

Syntax categories SML# type
SQL value expressions (τ1 -> τ2,w) SQL.exp

SQL commands (τ,w) SQL.command

SQL queries (τ,w) SQL.query

SELECT clauses (τ1,τ2,w) SQL.select

FROM clauses (τ,w) SQL.from

WHERE clauses (τ,w) SQL.whr

ORDER BY clauses (τ,w) SQL.orderby

OFFSET clauses (τ,w) SQL.offset

LIMIT clauses (τ,w) SQL.limit

where τ is either a table or basic type and w is the type atom that identifies a connection to a
database server. The meaning of the above SML# types are the following:

• (τ1 -> τ2, w) SQL.exp is the type of SQL value expressions that have type τ2 under the database
connection w and row type τ1.

• (τ1,τ2,w) SQL.select is the type of SELECT clauses that transforms tables of type τ1 to those
of type τ2 under the database connection w.

• For any other category, (τ,w) SQL.X is the type of constructs of X that have type τ under the
database connection w.

22.1. SQL TYPES 129

22.1.5 Types for SQL Handles

SML# gives database connections and query results the following types:
Types Descriptions
τ SQL.server a description of a connection to a database of type τ
τ SQL.conn a connection handle to a database of type τ
τ SQL.cursor a cursor to access to a table of type τ
(τ,w) SQL.db an instance of a database of type τ

The typical usage of these types are the following:

1. The _sqlserver expression generates a connection information of the τ SQL.server type (see also
Section 22.3).

2. The SQL.connect function establishes a connection to the server described in the connection in-
formation of the τ SQL.server type and returns a connection handle of the τ SQL.conn type (see
also Section 22.8.1).

3. SQL queries are constructed as polymorphic functions of type [’a. (τ,’a) SQL.db -> (τ ′ SQL.cursor,’a) SQL.command]

(see also Section 22.1.6).

4. The _sql syntax transforms the SQL query function to an SQL execution function of type τ SQL.conn -> τ ′ SQL.cursor

(see also Section 22.7).

5. Calling this function by giving it a connection handle of the τ SQL.conn type as its argument,
the SQL query is sent to the server and evaluated on the server. If the evaluation succeeds, the
function returns a cursor of the τ ′ SQL.cursor type to access to the result (see also Section 22.7).

6. The SQL.fetch or SQL.fetchAll function retrieves records of type τ ′ from the cursor of the
τ ′ SQL.cursor type (see also Section 22.8.2).

22.1.6 SML#’s Policy of Typing SQL Expressions

In SML#, SQL expressions are typed through the correspondence between SML# types and the struc-
tures of SQL data and expressions defined above. An SQL query, which operates on tables, has a similar
type to an SML# expression that does the same thing as the query for lists of records.

For example, an SQL query

SELECT t.name AS employeeName, t.age AS employeeAge

FROM employeeTable AS t

WHERE t.age > 20

is written in SML# as follows:

val Q = fn db => _sql select #t.name as employeeName, #t.age as employeeAge

from #db.employeeTable as t

where #t.age > 20

where db is the bound variable that abstracts the database instance on which the query is evaluated.
By the way, this query computes a table from the employeeTable table specified in its FROM clause

by filtering its rows according to the condition written in the WHERE clause and transforming the rows
by expressions in the SELECT clause. The SML# expression that performs the same thing for lists of
records can be written easily as follows:

val Q’ =

fn db => List.map

(fn x => {employeeName = #name (#t x), employeeAge = #age (#t x)})

(List.filter

(fn x => #age (#t x) > 20)

(List.map

(fn x => {t = x})

(#employeeTable db)))

The type of this Q’ is the following:

130 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

val Q’ : [’a#{employeeTable : ’b list},

’b#{age : int, name : ’c},

’c.

’a -> {employeeAge : ’c, employeeName : int} list]

In what follows, we refer to this function Q’ as a toy program of Q.
Through this correspondence between SQL queries and SML# expresions, SML# gives the above

query Q the following type, which represents the fact that the query does the same thing for tables as
the SML# expression for lists of records of the similar type:

val Q : [’a#{employeeTable : ’b list},

’b#{age : int, name : ’c},

’c::{int, ...}, ’d.

(’a, ’d) SQL.db -> ({employeeAge : ’c, employeeName : int} list, ’d)

SQL.query]

The kinded type variables occuring in the type of Q represent the following facts:

• ’a represents the fact that the database on which this query runs must have at least a table named
employeeTable of type ’b. Any other tables in the database does not affect the evaluation of the
query.

• ’b means that the employeeTable table must have at least two columns: the age column of type
int and the name column of type ’c. The employeeTable table may have other columns.

• ’c indicates that the name column may be of an arbitrary basic type (in fact, there is another type
variable that the overload kind of ’c refers to, but it is omitted here).

• ’d means that this query can be sent to a database server through an arbitrary connection handle
(this type variable is used to make sure that a query is not across more than one databases).

As seen in the record-polymorphic type of Q, an SQL query is inherently polymorphic with respect to
databases. SML# infers the most general polymorphic type of SQL queries with a target database
abstract.

Similarly to complete SQL queries, several kinds of SQL query fragments may have the natural
correspondence to SML# expressions dealing with lists and records. The typing rules introduced in this
chapter are defined based on this correspondence.

22.2 Extended ML Expressions for SQL Queries

As defined in Chapter 19, SML# extends the Standard ML expressions with the following constructs for
SQL queries:

⟨exp⟩ ::= · · ·
| _sqlserver (⟨appexp⟩)? : ⟨ty⟩ SQL servers
| _sql ⟨pat⟩ => ⟨sqlfn⟩ SQL execution function
| _sql ⟨sql⟩ SQL query fragments

⟨atexp⟩ ::= · · ·
| _sql (⟨sql⟩) SQL query fragments

⟨sql⟩ and ⟨sqlfn⟩ are given below:
⟨sql⟩ ::= ⟨sqlexp⟩ SQL value expressions

| ⟨sqlselect⟩ SELECT queries
| ⟨sqlclause⟩ SQL query clauses
| ⟨sqlcommand⟩ SQL commands

⟨sqlfn⟩ ::= ⟨sqlselect⟩ SELECT queries
| ⟨sqlclause⟩ SQL query clauses
| ⟨sqlcommand⟩ SQL commands

⟨sqlexp⟩ is defined in Section 22.4. ⟨sqlselect⟩ and ⟨sqcommand⟩ are defined in Section 22.5.
⟨sqlcommand⟩ is defined in Section 22.6.

In the expressions that begins with _sql, except for the position surrounded by ...(⟨exp⟩) or
(... ⟨exp⟩) (see Section 22.4, 22.5, and 22.6 for details), the following words are recognized as keywords
(this list of keywords is reused from Section 17.2). In the sequel, the following words are refered to as
SQL keywords.

22.3. DATABASE SERVER DESCRIPTION: THE SQLSERVER EXPRESSION 131

asc all begin by commit cross default delete desc distinct fetch first from group

inner insert into is join limit natural next not null offset only on or order

rollback row rows select set update values where

The above syntax has the following limitations:

• ⟨pat⟩ following _sql must not begin with a left parenthesize “(.”

• The ⟨sql⟩ of _sql ⟨sql⟩ as expressions (top-level) must begin with an SQL keyword.

• Any _sql ⟨sql⟩ as expressions (top-level) must occur only at the following positions:

– the immediate right side of = in a val and fun declarations,

– the position between in and end in a let expression,

– the inside of a sequential execution expression (· · ·;· · ·),

– immediately surrounded by parenthesizes that are not a part of any tuple, and

– the immediate right side of => in a fn expression occurring at one of the above four positions.

22.3 Database Server Description: The sqlserver Expression

The _sqlserver expressions denotes the following two things: the connection information of a database
server, and the schema the database server has. When the evaluation result of a _sqlserver expression is
applied to the SQL.connect function (see Section 22.8.1), it tries to connect the database server denoted
by the _sqlserver expression. If the connection is established and it is confirmed that the database
connected contains the schema denoted by the _sqlserver expression, the SQL.connect function returns
a connection handle to the server.

A _sqlserver expression consists of the following three items in this order: a kind of database to be
connected, a parameter specific to the database kind, and a record type representing the shchma that
the database is expected to have. The following is the typical example of a _sqlserver expression:

_sqlserver SQL.postgresql "host=localhost port=5432"

: {

employee : {id : int, name : string, age : int,

deptId : int option, salary : int option} list,

department : {deptId : int, name : string} list

}

This example denotes that the PostgreSQL server listening to localhost:5432 manages the database
schema corresponding to the record type. See Section 22.8.1 for details of the database kinds and
parameters supported in SML#.

In fact, an arbitrary function application expression ⟨appexp⟩ may occur between _sqlserver and :.
Also in the above example, SQL.postgresql and "host=localhost port=5432" are actually a function
and its argument. It is allowed to put here an expression that selects a server among different servers of
the same schema at runtime. The expression must be of the SQL.backend type.

The type of _sqlserver ⟨appexp⟩ : ⟨ty⟩ is ⟨ty⟩ SQL.server. ⟨ty⟩ must be a record type repre-
senting a database schema as described in Section 22.1.3.

The following syntax are retained for backward compatibility, but it is discouraged to use them in a
new program:

• ⟨appexp⟩ may be omitted. If omitted, the PostgreSQL server with the default connection parameter
is selected.

• ⟨appexp⟩ may be a string literal. If so, the string is interpreted as a connection parameter to a
PostgreSQL server.

132 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

22.4 SQL Value Expressions

An SQL value expression is an expression that occurs in an SQL command and evaluates to a value when
the SQL command evaluates. An SML#’s SQL value expression constructs a fragment of the SQL value
expression as its value. The SQL value expression constructed is almost literally identical to the SML#’s
counterpart and evaluated on the database server. For example, the SML#’s SQL value expression

_sql(1 + #employee.salary)

is evaluated to the SQL value expression

1 + employee.salary

as a fragment of an SQL command to be sent to a database server.
If an SQL value expression contains a subexpression that can be evaluated by SML#, the subexpres-

sion evaluates to a value and the value is embedded in an SQL command to be sent to a database server.
For example,

_sql(1 + 2 + #employee.salary)

is evaluated to the SQL value expression

3 + employee.salary

of a fragment of an SQL command.
The following set of expressions ⟨sqlexp⟩ , which includes a subset of value expressions of the standard

SQL, is available in SML#:

• SQL value expressions (top-level)
⟨sqlexp⟩ ::= ⟨sqlinfexp⟩

| not ⟨sqlexp⟩ SQL’s logical nagation
| ⟨sqlexp⟩ and ⟨sqlexp⟩ SQL’s logical conjunction
| ⟨sqlexp⟩ or ⟨sqlexp⟩ SQL’s logical disjunction

• SQL infix expressions
⟨sqlinfexp⟩ ::= ⟨sqlcastexp⟩

| ⟨sqlinfexp⟩ ⟨vid⟩ ⟨sqlinfexp⟩ infix expresssions

• SQL type cast expressions
⟨sqlcastexp⟩ ::= ⟨sqlappexp⟩

| (⟨vid⟩) ⟨sqlcastexp⟩ type cast

• SQL function application expressions
⟨sqlappexp⟩ ::= ⟨sqlatexp⟩

| ⟨vid⟩ ⟨sqlatexp⟩ function applications
| ⟨sqlappexp⟩ ⟨sqlatexp⟩ function applications
| ⟨sqlappexp⟩ is (not)? ⟨sqlis⟩ SQL’s IS predicates

⟨sqlis⟩ ::= null | true | false | unknown

• SQL atomic expressions
⟨sqlatexp⟩ ::= ⟨scon⟩ constant literals

| true SML#’s true literal
| false SML#’s false literal
| null SQL’s NULL literal
| # ⟨lab⟩ . ⟨lab⟩ Reference to a column in a named relation
| #. ⟨lab⟩ Reference to a column in an unnamed relation
| ⟨vid⟩ SML#’s variable reference
| op ⟨longvid⟩ SML#’s variable reference
| (⟨sqlexp⟩ , · · ·, ⟨sqlexp⟩) SML#’s tuples
| ((_sql)? ⟨sqlselect⟩) SQL’s SELECT subqueries
| (_sql)? exists ((_sql)? ⟨sqlselect⟩) SQL’s EXISTS subqueries
| ((_sql)? ⟨sqlcommand⟩)
| ((_sql)? ⟨sqlclause⟩)
| (⟨sqlexp⟩)
| (... ⟨exp⟩) embedded SQL value expressions

22.4. SQL VALUE EXPRESSIONS 133

As seen in the definition, some SQL value expressions may begin with the keyword _sql. This is
allowed just for the inner one of a nested SQL value expressions to be written in the same manner of
the outermost one. These _sql keywords are simply ignored.

The type of an SQL value expression ⟨sqlexp⟩ is determined under the type τ ′ of a set of tables and
w of the database connection identification, both of which are given in the static context. The type of
every subexpression in an SQL value expression is given under the same τ ′ and w. In what follows, we
write that the type of an expression e is (T,w) ▷ τ if e has type τ under τ ′ and w. If τ ′ and w do not
need to be described, we simply write that the type of e is τ .

22.4.1 Expressions evaluated by SML#

An SQL value expression satisfying the following inductive condition is evaluated by SML# and their
values are embedded in the SQL command to be sent to the database server.

1. A constant expression ⟨scon⟩ is evaluated by SML#.

2. Variable expressions ⟨vid⟩ and op ⟨longvid⟩ are evaluated by SML#.

3. A tuple (⟨sqlexp1⟩ , · · ·, ⟨sqlexpn⟩) is evaluated by SML# if ⟨sqlexpi⟩ is evaluated by SML# for
any i.

4. A function application ⟨vid⟩ ⟨sqlatexp⟩ is evaluated by SML# if ⟨sqlatexp⟩ is evaluated by SML#.

5. An infix expression ⟨sqlinfexp1⟩ ⟨vid⟩ ⟨sqlinfexp2⟩ is evaluated by SML# if ⟨sqlinfexpi⟩ is eval-
uated by SML# for any i.

6. An SML#’s function application ⟨sqlappexp⟩ ⟨sqlatexp⟩ is evaluated by SML#. A syntax error
occurs if either ⟨sqlappexp⟩ or ⟨sqlatexp⟩ is not evaluated by SML#.

For example, consider the following SQL query:

val q = _sql db => select SOME 1 + sum(#a.b) from #db.a group by #a.c;

The subexpression SOME 1 is evaluated by SML# and its value is embedded in the SQL query fragment
(if SOME is not defined, it causes an undefined variable error). sum(#a.b) is not evaluated by SML# and
therefore embedded in the query without any modification. The SQL query that is sent to the server
when executing q is the following:

SELECT 1 + SUM(a.b) AS "1" FROM a GROUP BY a.c

The type of expressions that are evalutated by SML# must be one of the SQL basic types defined
in Subsection 22.1.1.

Each subexpression evaluated by SML# in an SQL value expression is evaluated immediately at the
time when the SQL value expression is evaluated. The evaluation order of such subexpressions are also
same as SML# expressions. An SQL value expression is expansive, i.e, avoided to have polymorphic
types, if it contains a function application in a subexpression evaluated by SML#. Since SQL queries are
polymorphic in almost cases, SQL value expressions including function applicaions evaluated by SML#
often cause “value restriction” warnings, as seen in the following example:

_sql(1 + 2);

none:~1.~1-~1.~1 Warning:

(type inference 065) dummy type variable(s) are introduced due to value

restriction in: it

val it = _ : (?X1 -> int, ?X0) SQL.exp

To use an SQL expression polymorphically or to put it at the program toplevel, enclose it with fn () => · · ·
to avoid the warning. For example, in contrast to the above, the following example does not cause the
warning:

fn () => _sql(1 + 2);

val it = fn : [’a, ’b. unit -> (’a -> int, ’b) SQL.exp]

134 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

22.4.2 SQL constant expressions

Any constant expression in an SQL value expression is evaluated by SML#. The SML#’s syntax is used
to write SQL constants; therefore, they looks differently from the standard SQL. In particular, string
literals are totally different than the standard one.

Note that neither the true nor false has SQL.bool3 type. They denotes a first-class boolean value
and therefore they are distinguished from boolean expressions. See Section 22.1.2 for the distinction
between boolean expressions and values.

The UNKNOWN literal defined in SQL99 feature ID T031 is not provided in SML#. This is due to
the fact that PostgreSQL, the only implementation of the T031 feature, does not have the UNKNOWN
litreral, and even if another implementation of T031 would appear in the future, UNKNOWN can be
substituted by NULL without changing its meaning (this interchangable use of UNKNOWN and NULL
has been criticized since it is not compatible with the SQL core).

22.4.3 SQL identifier expressions

All the ⟨vid⟩ and op ⟨longvid⟩ references to the SML# variables. A ⟨longvid⟩ with one or more structure
identifiers must begin with the op keyword.

In the SQL value expressions, the infixity of some identifiers are declared as follows:

infix 7 %

infix 5 like ||

nonfix mod

The type and value of an identifier expression is varied depending on whether or not the identifier
occurs in an expression evaluated by SML#. If an identifier occurs in an expression evaluted by SML#,
its type and value are those of the identifier bound in the current context of the SML# program.
Otherwise, the type and value of an identifier are those of the identifier bound in the SQL.Op structure.

For example, the two + identifiers occured in the expression

_sql(1 + 2 + #a.b)

have different meanings. The first + is the + bound in the current SML# environment, and the second
+ is SQL.Op.+.

An identifier occuring in an expression that is not evaluated by SML#, except for ⟨vid⟩ of (⟨vid⟩) ⟨sqlappexp⟩
22.4.5), is embedded in the SQL query after translating it by the following rules:

• All lower case alphabets are replaced with upper case alphabets.

The value of an identifier defined in the SQL.Op structure is referred only when the toy program of the
SQL query is executed (see Subsection 22.8.3). Its type is used for typing SQL value expressions. For
example, the type of _sql(1 + #a.b) in SML# can be determined by looking for the type of SQL.Op.+.

22.4.4 SQL function applications and infix expressions

SQL function application and infix expressions are parsed in the same way as those of SML#, except for
builtin logical expressions. The associatibity of infix expressions is decided by SML#’s infix declarations.
Thus, SML#’s SQL infix operators may have different associatibity than the standard SQL in accordance
with the use of the infix declarations.

Unlike the standard SQL, the syntax of SML#’s function application expressions does not require the
function arguments to be parenthesized, but requires at least one delimiter or space between the function
and arguemnts. However, particularly in an SQL expressions, it is suggested to use parenthesizes for the
arguments and omit the space between the function and arguments so that it looks much closer to the
standard SQL. This is completely allowed in the grammar of Standard ML. For example, an aggregate
function can be used in a SQL query like as follows:

fn db => _sql select avg(#e.age)

from #db.employee as e

group by ()

22.4. SQL VALUE EXPRESSIONS 135

The subexpression avg(#e.age) is a function application expression that applies the SQL.Op.avg func-
tion to the argument #e.age.

Each of the SQL infix operators and functions, except for builtin logical operators, is provided as
an SML# library function defined in the SQL.Op structure. The list of SQL functions and operators
available in expressions that are not evaluated by SML# is shown in Section 22.9.2.

An SQL function application expression and SQL infix expression is typechecked in the same way as
those of SML#.

22.4.5 Type cast expressions

In a SML#’s SQL value expression, the expression consisting of a single identifier surrounded by paren-
thesizes has a special meaning. By putting an identifier surrounded by parenthesizes in front of an
expression, the value of the expression is applied to the function identified by the identifier. The identi-
fier and its surrounding parenthesizes do not appear in the SQL query to be sent to the database server.
An identifier surrounded by parenthesizes must be defined in the SQL.Op structure. In what follows, an
expression prefixed with an identifier surrounded by parenthesizes is referred to as a type cast expression.

A type cast expression corresponds to implicit type cast in SQL, which is not supported by SML#’s
type system. One of its typical usage is to deal with the option and numeric types. As described in
Section 22.1, SML# distinguish values being possibly NULL from non-NULL values by using option

type. In contrast, the standard SQL allows NULL in any type. Due to this difference, the SML#
compiler reports a type error even for a query type-correct in the standard SQL. Similarly, SML# does
not allow implicit numeric type conversion, which the standard SQL allows. For example, consider the
following that queries people younger than the average in each deparment:

fn db => _sql select #e.department as department, #e.name as name

from #db.empoloyee as e

where #e.age < (select avg(#t.age)

from #db.employee as t

where #t.department = #e.department

group by ())

This expression is typechecked, but the type of age column of employee table is infered as SQL.numeric option.
Thus, this query cannot be executed if the age column is of int. The source of this inference is
that the result of the aggregate function avg is compared with #e.age. The result type of avg is
SQL.numeric option. The comparison operator forces the two expressions to have the same type.
Therefore, the type of #e.age is SQL.numeric option. In the standard SQL, age may have an arbitrary
numeric type since its type is implicitly casted to NUMERIC.

For the above example, inserting Num function to the left side of the comparison operator allows age
to have an arbitrary numeric type.

fn db => _sql select #e.department as department, #e.name as name

from #db.empoloyee as e

where (Num)#e.age < (select avg(#t.age)

from #db.employee as t

where #t.department = #e.department

group by ())

This (Num) is ignored when an SQL query is composed; therefore, regardless of the existence of (Num),
the SQL query to be sent to the database server is not changed. The (Num) is evaluated statically only
for the typechecking of the SQL value expression.

For the set of identifiers provided for type cast expressions, see Subsection 22.9.1.

22.4.6 SQL logical expressions

The following logical operators are built in the syntax of expressions:

• not ⟨sqlexp⟩

• ⟨sqlexp1⟩ and ⟨sqlexp2⟩

• ⟨sqlexp1⟩ or ⟨sqlexp2⟩

136 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

• ⟨sqlexp⟩ is (not)? ⟨sqlis⟩
The and operator has an additional restriction on its syntax: to avoid conflict with other SML# syntax,
and may occur only if it is parenthesized. For example, the following causes a parse error:

fn () => _sql where #t.c >= 10 and #t.c <= 20;

(interactive):1.31-1.35 Error: Syntax error: deleting AND HASH

By surrounding the expression including the and operator with parenthesizes, the parse error is avoided,
as seen in the following:

fn () => _sql where (#t.c >= 10 and #t.c <= 20);

val it = fn : [’a#t: ’b, ’b#c: int, ’c.

unit -> (’a list -> ’a list, ’c) SQL.whr]

The type of a logical expression is SQL.bool3 if its all subexpressions is of the SQL.bool3 type.
Similarly, all SQL comparison operators provided as SML# library functions return a query of the
SQL.bool3 type.

As described in Section 22.1.2, to avoid confusion on dealing with boolean values in the standard
SQL, SML# distingishes the types of boolean expressions and boolean values. Note that boolean value
expressions, such as a reference to a column of the BOOLEAN type and the boolean value literals like
true, is not allowed to be a boolean expression. The following example causes a type error:

fn () => _sql(true is false);

(interactive):1.14-1.26 Error:

(type inference 016) operator and operand don’t agree

operator domain: SQL.bool3

operand: ’HBP::bool

In contrast, the following does not cause type error

fn () => _sql(#t.c = true is false);

val it = fn : [’a, ’b. unit -> (’a -> SQL.bool3, ’b) SQL.exp]

because #t.c = true is an boolean expression whereas true itself denotes an boolean value.

22.4.7 SQL column reference expressions

To reference a certain column of a certain table, write # ⟨lab1⟩ . ⟨lab2⟩ , where ⟨lab1⟩ and ⟨lab2⟩ are the
names of the table and column, respectively. The type of a column reference is that of the column ⟨lab2⟩
of the table ⟨lab1⟩ as specified in the type of table sets given by the static context.

Unlike the standard SQL, which sometimes allows to omit the table name in a column reference,
SML# requires the table name explicit in all the column reference expressions. In addition, column
references must be prefixed with # to avoid the conflict with other syntax.

Also unlike the standard SQL, table names and column names in SML# are case-sensitive. For
example,

SELECT Employee.name FROM EMPLOYEE

is a valid query in the standard SQL, but in SML#,

_sql db => select #Employee.name from #db.EMPLOYEE

causes an type error because the table name referenced is not found. In the SQL value expression to be
sent to a server, the table and column names appears in the same case as the SML#’s counterpart.

Sometimes in SQL, a column in an anonymous table is referenced. A typical example of this situation
is the ORDER BY clause that refers to a column computed by the SELECT clause. In SML#, such
kind of column references is written as #. ⟨lab⟩ . Its type is the type of the column ⟨lab⟩ . For example,
the SQL query

SELECT e.name AS name, e.age + 1 AS nextAge

FROM employee AS e

ORDER BY nextAge

is written in SML# as follows:

fn db => _sql select #e.name as name, #e.age + 1 as nextAge

from employee as e

order by #.nextAge

22.4. SQL VALUE EXPRESSIONS 137

22.4.8 SQL Subqueries

The following two kinds of subqueries are allowed in SML#:

• SELECT subqueries: (⟨sqlselect⟩)

• EXIST subqueries: exists (⟨sqlselect⟩)

An additional _sql keyword may appear just before the first keyword of a subquery so that it looks like
other SML#’s SQL expressions. These _sqls are simply ignored.

A SELECT subquery (⟨sqlselect⟩) must return a 1-column and 1-row result. The type system of
SML# enforces the 1-column property of a subquery and therefore it is checked at compile time. The
type of ⟨sqlselect⟩ must be

({1: τ} list, w) SQL.query

in SML#. If it is satisfied, the type of the subquery expression (⟨sqlselect⟩) is (T,w) ▷ τ for some τ ′.
The number of rows in the result of the subquery is checked at runtime by a database server. If the
subquery returns zero or more than one rows, the SQL.Exec exception is raised.

For an EXIST subquery exists (⟨sqlselect⟩), if ⟨sqlselect⟩ is of type

(τ list, w) SQL.query,

then the entire expression is of type (τ ′, w) ▷ SQL.bool3 for some τ ′.

22.4.9 Embedded SQL value expressions

To obtain a first-class SML# object of an SQL value expression ⟨sqlexp⟩ , write an expression _sql(⟨sqlexp⟩).
The type of _sql(⟨sqlexp⟩) is (τ ′ -> τ, w) SQL.exp if ⟨sqlexp⟩ is of type (τ ′, w) ▷ τ . For example,
the type of

val q = _sql(1 + #employee.salary)

is

val q : [’a#{employee: ’b}, ’b#{salary: int}, ’w. (’a -> int, ’w) SQL.exp].

To embed a fragment of SQL value expression obtained in such a way in another SQL value expression,
use the (... ⟨exp⟩) expression. For example, the following expression is constructed by embedding q in
it:

_sql((...q) > 10)

This expression denotes the following SQL query:

1 + employee.salary > 10

The type of (... ⟨exp⟩) is (τ ′, w)▷τ if the type of ⟨exp⟩ is (τ ′ -> τ, w) SQL.exp. If τ ′ is inconsistent
with the type of tables referenced by the expression where the ⟨exp⟩ is embedded in, a type error occurs.
For example, the following expression causes a type error:

_sql((...q) > 10 and #employee.salary = "abc")

The ⟨exp⟩ in the (... ⟨exp⟩) notation is not an SQL value expression but an SML# expression. In
⟨exp⟩ , SQL keywords are not keywords but ordinary identifiers as well as ordinary SML# expressions.

Although an embedded SQL value expresssion constitutes a constant expression in the resulting SQL
value expression, the constant expression is not evaluated by SML#. Whether or not an SQL value
expression is evaluated by SML# is determined only by the static syntacitic structure of the expression.
For example, the following function nat n does not return the value n, but returns the SQL value
expression 1 + 1 + · · · + 1 where the number of 1s is n

fun nat 1 = _sql(1)

| nat n = _sql(1 + (...nat (n - 1)));

val nat = fn : [’a, ’b. int -> (’a -> int, ’d) SQL.exp]

SQL.expToString (nat 5);

val it = "(1 + (1 + (1 + (1 + 1))))" : string

138 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

22.5 SELECT queries

SML# allows to construct a SELECT query by defining each of its clauses separately and composing
the clauses into one query. The clauses ⟨sqlclause⟩ of which a SELECT query consists is given below:

⟨sqlclause⟩ ::= ⟨sqlSelectClause⟩ SELECT clauses
| ⟨sqlFromClause⟩ FROM clauses
| ⟨sqlWhereClause⟩ WHERE clauses
| ⟨sqlOrderClause⟩ ORDER BY clauses
| ⟨sqlOffsetClause⟩ OFFSET clauses
| ⟨sqlLimitClause⟩ LIMIT clauses

The details of each clause is shown below in a subsection of this section.
A SELECT query is constructed by combining these clauses and the GROUP BY clause ⟨sqlGroupClause⟩ .

The syntax of the SELECT queries is the following:
⟨sqlselect⟩ ::= ⟨sqlSelectClause⟩ SELECT query with SELECT clause

⟨sqlFromClause⟩
(⟨sqlWhereClause⟩)?
(⟨sqlGroupClause⟩)?
(⟨sqlOrderClause⟩)?
(⟨sqlLimitClause⟩)?

| select ... (⟨exp⟩) SELECT query whose SELECT clause will be embedded
⟨sqlFromClause⟩
(⟨sqlWhereClause⟩)?
(⟨sqlGroupClause⟩)?
(⟨sqlOrderClause⟩)?
(⟨sqlLimitClause⟩)?

| select ... (⟨exp⟩) embedded SELECT queries
The first two syntaxes constructs a SELECT query. A SELECT query must contain a SELECT

clause and FROM clause. Other clauses are optional. While some RDBMSes accepts SELECT queries
without FROM clauses, SML# does not allow such queries. The meaning of select ... (⟨exp⟩) in
the second form is decribed later.

A SELECT query has type (τ, w) SQL.query if the following conditions are met:

• ⟨sqlFromClause⟩ has type (τ1, w) SQL.from for some τ1.

• If ⟨sqlWhereClause⟩ exists, it must have type (τ1 -> τ1, w) SQL.whr.

• If a GROUP BY clause exists, a row group type τ2 is calculated from τ1 (see Section 22.5.4 for
details). Otherwise, τ2 = τ1.

• ⟨sqlSelectClause⟩ must have type (τ2, τ, w) SQL.select.

• If ⟨sqlOrderClause⟩ exists, it must have type (τ -> τ, w) SQL.orderby.

• If ⟨sqlLimitClause⟩ exists, it must have type (τ -> τ, w) SQL.limit.

The following is an example of a complete SELECT query:

val q = fn db => _sql select #t.name as name, #t.age as age

from #db.employee as t

where #t.age >= 20

The third form select...(⟨exp⟩) embeds the result of the SML# expression ⟨exp⟩ as a SELECT
query. The type of ⟨exp⟩ must be SQL.query. For example, the following code embeds the query q in
another query q2 as a subquery:

val q2 = fn db => _sql select #t.name as name

from (select...(q db)) as t

where #t.name like "%Taro%"

As seen in the second form of the SELECT query and the syntax of each clause shown in the subsec-
tions, except for some particular clauses, it is allowed to write the clause name followed by ...(⟨exp⟩)
to embed the result of ⟨exp⟩ as a clause of the clause name. By using this nontation, the above example
of a SELECT query can be decomposed into a series of val definitions as follows:

22.5. SELECT QUERIES 139

val s = _sql select #t.name as name, #t.age as age

val f = fn db => _sql from #db.employee as t

val q = fn db => _sql select...(s) from...(f db)

The ⟨exp⟩ in the ...(⟨exp⟩) notation is not an SQL value expression but an SML# expression. In
⟨exp⟩ , SQL keywords are not keywords but ordinary identifiers as well as ordinary SML# expressions.

22.5.1 SELECT clauses

The syntax of SELECT clauses ⟨sqlSelectClause⟩ is the following:
⟨sqlSelectClause⟩ ::= select (⟨distinct all⟩)? ⟨sqlSelectField⟩ , · · ·, ⟨sqlSelectField⟩
⟨distinct all⟩ ::= distinct | all
⟨sqlSelectField⟩ ::= ⟨sqlexp⟩ (as ⟨lab⟩)?

A SELECT clause consists of one or more fields of the form ⟨sqlSelectField⟩ . Each field has a label
⟨lab⟩ . If the as ⟨labi⟩ of the i-th field (the first field is 1st) is omitted, it is complemented by adding
as i. No two fields may have the same label.

For ⟨sqlSelectClause⟩ with n fields, if the ⟨sqlexpi⟩ of its i-th field (1 ≤ i ≤ n) ⟨sqlexpi⟩ as ⟨labi⟩
has the (τ, w) ▷ τi type, the type of entire ⟨sqlSelectClause⟩ is of the type

(τ, { ⟨lab1⟩ : τ1, . . ., ⟨labn⟩ : τn} list, w) SQL.query.

22.5.2 FROM clauses

The syntax of the From clauses ⟨sqlFromClause⟩ is the following:
⟨sqlFromClause⟩ ::= from ⟨sqlTable⟩ , · · · , ⟨sqlTable⟩

| from ... (⟨exp⟩)
The first syntax constructs a FROM clause. The second form embeds the value of ⟨exp⟩ in the ontext

as a FROM clause. ⟨exp⟩ must be of the SQL.from type.
The commas in the first form sometimes conflicts with those of SML#’s tuple expressions. For

example,

(1, _sql from #db.t1, #db.t2, #db.t3)

is ambiguous because there are two possible interpretations: this denotes a pair of an integer and FROM
clause, or a 4-tuple whose second element is a FROM clause. The FROM clause must be parenthesized
as either

(1, _sql (from #db.t1, #db.t2, #db.t3))

if the expression means the former, or

(1, _sql (from #db.t1), #db.t2, #db.t3)

if it means the latter. This is why the syntactic restriction described in Section 22.2 is introduced. In
contrast to the above example,

(_sql from #db.t1, #db.t2, #db.t3)

is a single FROM clause expression with no ambiguity because it begins with _sql.
A table expression ⟨sqlTable⟩ denotes a table. Its syntax is as follows:
⟨sqlTable⟩ ::= # ⟨vid⟩ . ⟨lab⟩ reference to a table

| ⟨sqlTable⟩ as ⟨lab⟩ labeling expressions
| ((_sql)? ⟨sqlselect⟩) table subqueries
| ⟨sqlTable⟩ (inner)? join ⟨sqlTable⟩ on ⟨sqlexp⟩ inner join of two tables
| ⟨sqlTable⟩ cross join ⟨sqlTable⟩ product of two tables
| ⟨sqlTable⟩ natural join ⟨sqlTable⟩ natural join of two tables
| (⟨sqlTable⟩)

The labeling expressions must has the following rules:

• The labeling expressions has the strongest associativity among the table expressions.

• If a table reference # ⟨vid⟩ . ⟨lab⟩ is not labeled with a labeling expression, it is labeled by the same
name as the table as if as ⟨lab⟩ is specified.

140 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

The syntax of ⟨sqlTable⟩ is restricted by the following rules:

• All as ⟨lab⟩ s occurring in a ⟨sqlFromClauses⟩ must be distinct. Thus, if a table is referenced
twice or more times in a FROM clause, the references of the table must be labeled differently by
as.

• Each of the ⟨sqlTable1⟩ and ⟨sqlTable2⟩ in a ⟨sqlTable1⟩ natural join ⟨sqlTable2⟩ must be
neither an inner or cross join.

• The ⟨sqlTable⟩ of a ⟨sqlTable⟩ as ⟨lab⟩ must be neither an inner or cross join.

For a a FROM clause with n labels of ⟨sqlTablei⟩ as ⟨labi⟩ (1 ≤ i ≤ n), if the type of each
⟨sqlTablei⟩ is τi, the type of entire FROM clause is the following:

({ ⟨lab1⟩ : τ1, . . ., ⟨labn⟩ : τn} list, w) SQL.from

The type of ⟨sqlTablei⟩ is decided as follows:

• The type of # ⟨vid⟩ . ⟨lab⟩ is τ ′ where the type of ⟨vid⟩ is (τ, w) SQL.db and τ is a record type
including at least a ⟨lab⟩ :τ ′ field.

• The type of ⟨sqlTable⟩ as ⟨lab⟩ is identical to that of ⟨sqlTable⟩ .

• The type of (⟨sqlselect⟩) is τ where ⟨sqlselect⟩ has type (τ,w) SQL.query.

• The type of ⟨sqlTable1⟩ natural join ⟨sqlTable2⟩ is the record type obtained by performing the
natural join operation on the record types of the two tables.

SML# does not compute the type of inner and cross joins. Therefore, inner and cross joins cannot be
labeled by as directly (syntactically restricted). The type of these joins are represented by the record
type of the entire FROM clause.

A FROM clause computes a table obtained by joining the tables it refers to. The record type
{ ⟨lab1⟩ : τ1, . . ., ⟨labn⟩ : τn} of a FROM clause represents a row of the computed table. Each field
of the record type corresponds to a labeled subset of columns. The SQL column reference expressions
occurring in other clauses refer to these labels.

22.5.3 WHERE clauses

Here is the syntax of the WHERE clauses ⟨sqlWhereClause⟩ :
⟨sqlWhereClause⟩ ::= where ⟨sqlexp⟩

| where ... (⟨exp⟩)
The first form construct a WHERE clause. Its type is (τ -> τ, w) SQL.whr if ⟨sqlexp⟩ has type

(τ, w) ▷ SQL.bool3.
The second form embeds the result of ⟨exp⟩ in the current context. ⟨exp⟩ must be of the SQL.whr

type.

22.5.4 GROUP BY clauses

The syntax of the GROUP BY clauses ⟨sqlGroupClause⟩ is the following:
⟨sqlGroupClause⟩ ::= group by ⟨sqlexp⟩ , · · · , ⟨sqlexp⟩ (having ⟨sqlexp⟩)?

| group by ()

Different from other clauses, the ...(⟨exp⟩) notation is not allowed for the GROUP BY clauses and
therefore they cannot be separated from the SELECT queries. Syntactically, a GROUP BY clause must
occur along with a SELECT and FROM clauses.

Each ⟨sqlexpi⟩ comma-separated in a GROUP BY clause must be of type (τ, w) ▷ τi where the type
of the associated FROM clause is (τ, w) SQL.from. The GROUP BY clause splits the table computed
by the FROM clause to the groups of rows by using keys specified in ⟨sqlexp⟩ s, as described later.

A GROUP BY clause may have just one HAVING clause. The value expression of a HAVING clause
is a condition to filter the row groups; therefore, its type must be (τ ′, w) ▷ SQL.bool3.

The second form group by () is one of the standard SQL syntax that makes a single group of all
rows. In a conventional SQL, if an aggregate function is used without a GROUP BY clause, the query
aggregates the entire table implicitly. For example, the SQL query

22.5. SELECT QUERIES 141

SELECT avg(e.age) FROM employee AS e

is a correct SQL query that computes the average of the e.age column. In contrast, SML# forces such
an aggregating query to have group by (). The above query must be written in SML# as follows:

fn db => _sql select avg(#e.age) from #db.employee as e group by ()

This SML# expression is evaluated to the SQL query

SELECT avg(e.age) FROM employee AS e GROUP BY ()

as in the SML# expression.
The type τ ′ of the row groups computed by a GROUP BY clause is computed roughly in the following

steps:

1. Let the type of rows before grouping be

τ = {k1:τ1, . . ., kn:τn}

where the type of the FROM clause is τ list.

2. Group the rows in lists. Hence, the group type is naturally τ list list.

3. Transpose the row group type {k1:τ1, . . ., kn:τn} list to τ t = {k1:τ1 list, . . ., kn:τn list}.

For the transposition in the step 3, the set of columns k1, . . . , kn must be determined at compile time,
as opposed to the record-polymorphic property of queries. SML# obtains the set of columns from
column reference expressions ocurring in the entire query with a GROUP BY clause. For each column
reference # ⟨lab1⟩ . ⟨lab2⟩ occurring as either a key specified in the GROUP BY clause or column reference
expression referring to a grouped value, if the column reference is identical to one of the group keys, the
column refers to the single key value and therefore the type of the column is not changed in the result
of the GROUP BY clause. Otherwise, the type of the column is the list type of its original type. Any
other columns, which are never refered to in the query, are ignored and omitted in the result type of the
GROUP BY clause.

Note that this type computation is performed based on the syntactic context and hence does not
consider variable references. For example,

val q = fn db => _sql select #e.department, avg(#e.salary)

from #db.employee as e

group by #e.department

is a typechecked query with a GROUP BY clause. However,

val s = _sql select #e.department, avg(#e.salary)

val q = fn db => _sql select...(s)

from #db.employee as e

group by #e.department

causes a type error because the second example does not have any SELECT clause construction but
an embedding, in contrast to the first example that have both a SELECT and GROUP BY clauses in
the same syntax of a query. In the first example, the type of the row groups has #e.department and
#e.salary columns as expected, but in the second example, the row groups is regarded to have no
column since no column reference occur in the same query syntax. As a good manner, when you write
a query with group by, you should not use the ...(⟨exp⟩) notation for its SELECT clause.

Notes for the observant readers: even when the SELECT clause is sepearated from a query with
GROUP BY, if the embedded SELECT clause only refers to the group keys, the query does not cause
type errors. For example, edit the above example by removing avg(#e.salary) from the definition of s
as follows:

val s = _sql select #e.department

val q = fn db => _sql select...(s)

from #db.employee as e

group by #e.department

This program does not cause type errors because #e.department is a group key and therefore it is
included in the result type of GROUP BY.

142 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

22.5.5 ORDER BY clauses

The syntax of the ORDER BY clauses ⟨sqlOrderclause⟩ is the following:

⟨sqlOrderClause⟩ ::= order by ⟨sqlOrderKey⟩ , · · · ⟨sqlOrderKey⟩
| order by ... (⟨exp⟩)

⟨sqlOrderKey⟩ ::= ⟨sqlexp⟩ (⟨asc desc⟩)?
⟨asc desc⟩ ::= asc | desc

The first form constructs an ORDER BY clause. The second form embeds the result of ⟨exp⟩ in the
current context as an ORDER BY clause. ⟨exp⟩ must be of the SQL.orderby type.

An ORDER BY clause rearranges the rows computed by the SELECT clause. For the SELECT
query computing the rows of type τ , Each ⟨sqlexpi⟩ in the ORDER BY clause must be (τ, w) ▷ τi, and
the entire ORDER BY clause must be of type (τ -> τ, w) SQL.orderby.

There are several variations of ORDER BY clause in SQL since it has been extended by the database
vendors and standard trucks without backward compatibility. The convention SML# adopts is that an
ORDER BY clause may refer to only the result of the SELECT clause. The column reference expression
with anonymous table #. ⟨lab⟩ is used to refer to a column of the SELECT clause from the ORDER BY
clause. The following shows an example:

fn db => _sql select #e.name as name, #.age as age

from #db.employee as e

order by #.age

While many database engines allows for ORDER BY to refer to columns other than those of SELECT,
SML# prohibits such references. The following program causes type errors, for example:

fn db => _sql select #e.name as name, #.age as age

from #db.employee as e

order by #e.department

22.5.6 OFFSET or LIMIT clauses

The OFFSET and LIMIT clauses have same meaning; they returns the rows only in the given range. The
major difference of these clauses is who specify them: the OFFSET clause is specified in the standard
SQL, and the LIMIT clause is a widely-accepted vender extention. SML# supports both.

The syntax of them ⟨sqlOffsetOrLimitClause⟩ is as follows:

⟨sqlOffsetOrLimitClause⟩ ::= sqlOffsetClause | sqlLimitClause
⟨sqlOffsetClause⟩ ::= offset ⟨sqlatexp⟩ ⟨row˙rows⟩ (⟨sqlFetchClause⟩)?
⟨sqlFetchClause⟩ ::= fetch ⟨first˙next⟩ ⟨sqlatexp⟩ ⟨row˙rows⟩ only

⟨row rows⟩ ::= row | rows
⟨first next⟩ ::= first | next
⟨sqlLimitClause⟩ ::= limit ⟨sqlexp⟩ (⟨sqlLimitOffsetClause⟩)?

| limit all (⟨sqlLimitOffsetClause⟩)?
⟨sqlLimitOffsetClause⟩ ::= offset ⟨sqlexp⟩

Note that the keyword offset is used in two ways in the above syntax: offset is either the subclause
for a LIMIT clause or the main clause of a OFFSET clause that may have a FETCH subclause. These
subclauses are not interchangable. Note also that if an OFFSET clause or its FETCH subclause has a
non-constant expression, the expression must be parenthesized.

The type of ⟨sqlexp⟩ and ⟨sqlatexp⟩ must be ({}, w) ▷ int. Therefore, no column reference may
appear in these clauses.

Several database engines allows these clauses and subclauses to appear more than one times in a
qeury in any order. SML# follows the standard SQL and hence a main clause must be followed by its
subclause. A query may contain only one of these clauses.

22.5.7 Corelated Subqueries

If more than one SELECT queries are nested, the inner query is a subquery of the outer query. A
subquery is referred to as a corelated subquery if it refers to columns introduced by the FROM clause of
its outer query. The following is an example of a corelated subquery in the standard SQL:

22.5. SELECT QUERIES 143

SELECT e.department AS department, e.name AS name

FROM empoloyee AS e

WHERE e.salary > (SELECT avg(#t.salary)

FROM employee as t

WHERE t.department = e.department

GROUP BY ())

In SML#, a subquery may appear as an value expression ⟨sqlexp⟩ (see also Section 22.4.8) and in a
FROM clause (Section 22.5.2). A subquery may be a corelated subquery if the following conditions are
met:

1. If a subquery itself and all of its outer queries have FROM clauses not of the form from...(⟨exp⟩),
the subquery may be a corelated subquery.

This is a translation of the above SQL query into SML#.

fn db => _sql select #e.department as department, #e.name as name

from #db.empoloyee as e

where #e.salary > (select avg(#t.salary)

from #db.employee as t

where #t.department = #e.department

group by ())

If one of the nested query has from...(⟨exp⟩), subqueries are not to be corelated. For example, if the
above example is editted as follows by replacing its FROM clause with from...(⟨exp⟩)

let

val f = fn db => _sql from #db.employee as t

in

fn db => _sql select #e.department as department, #e.name as name

from #db.empoloyee as e

where #e.salary > (select avg(#t.salary)

from...(f db)

where #t.department = #e.department

group by ())

end

the e of #e.department in the subquery is not interpreted as the e of from #db.employee as e in the
outer query, but e to be introduced by from ...(x db). Therefore, x db must have e. Concequently,
this example causes a type error. Also in the case when the outer query has from...(⟨exp⟩), such as

let

val f = fn db => _sql from #db.empoloyee as e

in

fn db => _sql select #e.department as department, #e.name as name

from...(f db)

where #e.salary > (select avg(#t.salary)

from #db.employee as t

where #t.department = #e.department

group by ())

the subquery is not regarded as corelated one and therefore the e of #e.department is undefined.
Corelated subqueries and GROUP BY clauses can be combined as expected. For example, the

following queries the youngest person who have incomes greater than the average saraly of his/her
department:

fn db => _sql

select #e.department, (select min(#t.age)

from #db.employee as t

where (#t.department = #e.department

and (Some) #t.salary > min(#e.salary))

group by ())

from #db.employee as e

group by #e.department

144 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

The inner query aggregates the grouped column #e.salary of the outer query by the min aggregate
function. As described in Section #e.salary, the type of GROUP BY is computed from the syntactic
context. This is also true even if a query has corelated subqueries.

Notes for the observant readers: A corelated subquery must occur in a outer query, but the subquery
is not tightly corelated to the outer query similarly to the static scoping of ML variables. The syntactic
restriction of corelated subqueries are introduced just to make the type computation of subqueries
possible in a static manner. As long as any SQL value expressions including corelated subqueries are
first-class citizens, it is possible to detach a corelated subquery A from a nested query B and embed A
to another nested query C by exploiting SML# features. In the resulting query, A embedded in C refers
to C’s tables, not to B. Regardless of the query construction operations, if the type of those operations
are consistent, then the resulting SQL query is correct.

22.6 SQL commands

SML# accept the following subset of SQL commands ⟨sqlcommand⟩ as well as SELECT queries:

⟨sqlcommand⟩ ::= ⟨sqlinsert⟩ INSERT commands
| ⟨sqlupdate⟩ UPDATE commands
| ⟨sqldelete⟩ DELETE commands
| ⟨sqltransaction⟩ transaction management commands
| (⟨sqlfn⟩ ; · · ·; ⟨sqlfn⟩) command sequence
| ... (⟨exp⟩) embedded SQL commands

The type of INSERT, UPDATE, DELETE, and transaction commands is

(unit, w) SQL.command

Details of these commands are shown in the following subsections.

(⟨sqlfn1⟩ ; · · ·; ⟨sqlfnn⟩) (n must be greater than 1) is a command consisting of a sequence of
commands separated by semicolons. Its type is equal to the type of the last command ⟨sqlfnn⟩ .

...(⟨exp⟩) embeds the result of ⟨exp⟩ as a command.

22.6.1 INSERT commands

The syntax of the INSERT command is the following:
⟨sqlinsert⟩ ::= insert into # ⟨vid⟩ . ⟨lab⟩ (⟨lab⟩ , · · ·, ⟨lab⟩)

values ⟨insertRow⟩ , · · ·, ⟨insertRow⟩
| insert into # ⟨vid⟩ . ⟨lab⟩ (⟨lab⟩ , · · ·, ⟨lab⟩)

values ⟨insertVar⟩
| insert into # ⟨vid⟩ . ⟨lab⟩ ((⟨lab⟩ , · · ·, ⟨lab⟩))? ⟨sqlselect⟩

⟨insertRow⟩ ::= (⟨insertVal⟩ , · · ·, ⟨insertVal⟩)
⟨insertVal⟩ ::= ⟨sqlexp⟩ | default
⟨insertVar⟩ ::= ⟨vid⟩ | op ⟨longvid⟩

The syntax is restricted by the following rules:

• The labels of (⟨lab⟩ , · · ·, ⟨lab⟩) must be distinct.

• The number of ⟨insertVal⟩ in ⟨insertRow⟩ must be equal to the number of labels in (⟨lab⟩ , · · ·, ⟨lab⟩).

An INSERT command inserts the rows in either the values subclause or the result of the ⟨sqlselect⟩
query into the designated table. If an SML# variable ⟨vid⟩ or op ⟨longvid⟩ is written in the values

subclause, the list of the records consisting of labels ⟨lab1⟩ , · · ·, ⟨labn⟩ denoted by the variable is inserted
into the table. If the rows to be inserted does not cover all the columns in the designated table, the
columns not covered are filled with the default values, which is specified when the table is created. If
a column is specified as default in a row of the values clause, the default value is also inserted into
that column. If a default value is needed but no default value is specified, the database server causes an
runtime error and the SQL.Exec exception is raised in SML#.

The typing rules are the following:

• ⟨vid⟩ must be of the SQL.db type that has at least the table name ⟨lab⟩ .

22.6. SQL COMMANDS 145

• If there is (⟨lab1⟩ , · · ·, ⟨labn⟩), either the table # ⟨vid⟩ . ⟨lab⟩ refers to or the ⟨sqlselect⟩ query
must have at least columns ⟨lab1⟩ , . . . , ⟨labn⟩ . Other columns may be included in it. for ⟨sqlselect⟩ ,
the column sets of its result and the designated table may be different.

• If no (⟨lab1⟩ , · · ·, ⟨labn⟩) appears, the column set of the result of the ⟨sqlselect⟩ query and the
designated table must be identical.

• The type of the i-th expression ⟨sqlexpi⟩ in the values columns must be ({}, w) ▷ τi where τi is
the type of the ⟨labi⟩ column of the designated table.

22.6.2 UPDATE Commands

The syntax of the UPDATE command is the following:
⟨sqlupdate⟩ ::= update # ⟨vid⟩ . ⟨lab⟩

set ⟨updateRow⟩ , · · ·, ⟨updateRow⟩
(⟨sqlWhereClause⟩)?

⟨updateRow⟩ ::= ⟨lab⟩ = ⟨sqlexp⟩
The syntax is restricted by the following rules:

• All the ⟨lab⟩ s of ⟨updateRows⟩ must be distinct.

An UPDATE command updates the rows in the designated table and matched with the condition
of the WHERE clause with the values of the SET clause. The columns not specified in the SET clause
are left original. The expressions in the SET clauses may include column references of the table ⟨lab⟩
in order to refer to the original value.

The typing rules are the following:

• ⟨vid⟩ must be of the SQL.db type that has at least the table name ⟨lab⟩ .

• The column ⟨labi⟩ of each ⟨updateRowi⟩ must be a column in the designated table. The table
may have other columns.

• The type of ⟨sqlexpi⟩ of each ⟨updateRowi⟩ must be ({ ⟨lab⟩ : τ}, w) ▷ τi where τ is the type of
the designated table and τi is the type of the ⟨labi⟩ column in τ .

• If there exists ⟨sqlWhereClause⟩ , it must be of type (τ -> τ, w) SQL.whr where τ is the type of
the designated table.

22.6.3 DELETE commands

The following is the syntax of the DELETE commands:

⟨sqldelete⟩ ::= delete from # ⟨vid⟩ . ⟨lab⟩ (⟨sqlWhereClause⟩)?
An DELETE commands deletes the rows matched with the condition of the WHERE clause from

the designated table.

The typing rules are the following:

• ⟨vid⟩ must be of the SQL.db type that has at least the table name ⟨lab⟩ .

• If there exists ⟨sqlWhereClause⟩ , its type must be of (τ -> τ, w) SQL.whr where τ is the type
of the designated table.

22.6.4 BEGIN, COMMIT, and ROLLBACK commands

The following transaction control commands are available in SML#:
⟨sqltransaction⟩ ::= begin start a transaction

| commit commit a transaction
| rollback abort a transaction

146 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

22.7 SQL execution function expressions

An SQL execution function _sql ⟨pat⟩ => ⟨sqlfn⟩ generates a function that executes the SQL command
⟨sqlfn⟩ on a database server. By applying this function to a connection handle to a database, the ⟨sqlfn⟩
expression is evaluated and the resulting SQL command is sent to the server. This function returns the
execution result if the execusion is successfully done, or raises the SQL.Exec exception otherwise. This
function behaves as the following:

1. It receives a connection handle of the τ SQL.conn type as its argument.

2. It obtains an database instance of the (τ, w) SQL.db type from the connection handle and binds
the pattern ⟨pat⟩ to it.

3. It evaluates the expression ⟨sqlfn⟩ and obtains the command of type (τ ′, w) SQL.command. Ex-
ceptionally, if ⟨sql⟩ is of the form ⟨sqlselect⟩ , it interprets an SELECT query of type (τ, w) SQL.query

as an SQL command of type (τ SQL.cursor, w) SQL.command.

4. It serializes the command and sends it to the server.

5. If succeeded, it returns the result of type τ ′.

As seen in these steps, the type of the execution function is τ SQL.conn -> τ ′ when the type of the
command is (τ, w) SQL.db -> (τ ′, w) SQL.command. Typically, τ ′ is either SQL.cursor if ⟨sqlfn⟩
is ⟨sqlselect⟩ , or unit otherwise.

The most simple way to execute an SQL query or command is to write it in an SQL execution
function directly. For example,

val q = _sql db => select #t.name as name, #t.age as age

from #db.employee as t

where #t.salary >= 300

order by #.age

is the function q that execute the query. To execute the query whose clauses are independently con-
structed, use the select...(⟨exp⟩) notation in the body of an SQL execution function, as seen in the
following:

val s = _sql select #t.name as name, #t.age as age

val f = fn db => _sql from #db.employee as t

val g = fn db => select...(s) from...(f db)

val q = _sql db => select...(q db)

For SQL commands, write it directly in an SQL execution function. For example,

val w = fn () => _sql where #employee.name = "Taro"

val c = fn db => _sql update #db.employee

set āge = #employee.age + 1,

salary = #employee.salary + 100

where...(w ())

val q = _sql db => ...(c db)

The typing rules of the SQL execution functions are the following:

• In the type of ⟨sqlfn⟩ , which is either (τ,w) SQL.command or (τ ′,w) SQL.query, the w must be
the type variable occuring only in the type of ⟨sqlfn⟩ .

This restriction is introduced to avoid queries across multiple databases. For example, the following
causes a type error:

fun f exp = _sql db => select #e.name, (...exp) from #db.employee as e;

(interactive):1.12-1.65 Error:

(type inference 067) User type variable cannot be generalized: ’$h

22.8. SQL LIBRARY: THE SQL STRUCTURE 147

The formal reason of this error is that the w of (τ,w) SQL.query, which is the type of select · · ·, is
also used in the type of the exp argument, (τ ′,w) SQL.exp, since exp of the argument of f is included
in select, and therefore the above restriction is violated. From the practical perspective, this is an error
because the exp argument may be an SQL value expression related to the database different from the
db of _sql db => · · ·. To understand the situation, consider another following function that calls f:

fun badExample conn1 conn2 =

(_sql db2 =>

select...((f _sql((select #t1.c1 from #db2.t1)) conn1;

_sql(select #t2.c2 from #db2.t2))))

conn2

If f is a polymorphic function, the badExample function is also typed regardless of the above type
restriction. The badExample function receives two connection handle conn1 and conn2, which point to
possibly different databases, and executes the query of the function f and another query on conn1 and
conn2, respectively. Its strange behavior is that it executes the query of f in an SQL execution function.
In addition, it applies f to a subquery on db2 of conn2, not conn1. Concequently, the query executed
in f refers to the two databases, one of which is referred to as db in f, and another of which is referred
to as db2 in badExample. Such a query cannot be executed.

In practice, the place in which an SQL execution function can place is limited due to this restriction.
In particular, as seen in the above f, a function that executes a given query as an argument is not
allowed. To avoid this limitation, you should distinguish between query construction functions and
query execution functions. For example, if the above f is rewritten so that it constructs a query rather
than executes it as follow, then the type error is avoided:

fun f exp = fn db => _sql select #e.name, (...exp) from #db.employee as e

val q = _sql db => select...(f _sql(#e.saraly) db)

The SQL.Exec exception is raised in the following situations:

1. Constraint violation other than NOT NULL.

2. Overflow of integers or strings.

3. Division by zero.

4. The use of an SQL syntax that SML# supports but the database server cannot interpret.

Notes on 4.: the SQL syntax of SML# is designed based on the SQL99 standard extended with popular
extensions among major database engines and natural extension in the sence of functional programming
langauges. The compliance with the standard SQL and the detail of interpretation rules of SQL queries
may depend on the implementation of the database servers. Therefore, the programmer should not
use SML#’s SQL syntax with no limitation but choose its subset in accordance with the manual of the
database server to be used. The following are such incompatibilities known at the time when this manual
is authored:

• PostgreSQL ignores AS in a FROM clause if the AS occur in a join expression labeled with AS. For
example, the following query causes an error since x is undefined:

SELECT x.col FROM (a AS x NATURAL JOIN b AS y) AS z

• SQLite3 does not support the group by () notation, which is introduced in SQL99. Use group by ""

instead.

22.8 SQL Library: The SQL Structure

SML# provides the types and functions related to SQL as a library. All of them are included in the SQL
structure provided by the sql.smi interface file. An SML# source file that uses the SQL feature must
include the following lines in its interface file so that it refers to sql.smi:

_require "sql.smi"

The following is the signature of the SQL structure:

148 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

structure SQL : sig

type bool3

type numeric

type decimal = numeric

type backend

type ’a server

type ’a conn

type ’a cursor

type (’a, ’b) exp

type (’a, ’b) whr

type (’a, ’b) from

type (’a, ’b) orderby

type (’a, ’b, ’c) select

type (’a, ’b) query

type (’a, ’b) command

type (’a, ’b) db

exception Exec

exception Connect

exception Link

val postgresql : string -> backend

val mysql : string -> backend

val odbc : string -> backend

val sqlite3 : string -> backend

structure SQLite3 : (see Section 22.8.1)
val connect : ’a server -> ’a conn

val connectAndCreate : ’a server -> ’a conn

val closeConn : ’a conn -> unit

val fetch : ’a cursor -> ’a option

val fetchAll : ’a cursor -> ’a list

val closeCursor : ’a cursor -> unit

val queryCommand : (’a list, ’b) query -> (’a cursor, ’b) command

val toy : ((’a, ’c) db -> (’b, ’c) query) -> ’a -> ’b

val commandToString : ((’a,’c) db -> (’b,’c) command) -> string

val queryToString : ((’a,’c) db -> (’b,’c) query) -> string

val expToString : (’a,’c) exp -> string

Structure Op : (see Section 22.9)
Structure Numeric : see Section 22.9
Structure Decimal = Numeric

end

These definitions are categorized by their purposes. Each of the following subsections describes the
definitions belonging to a category.

22.8.1 Connecting to a database server

• exception Connect of string

The exception of a database connection error. string is the error message.

• exception Link of string

The exception indicating the mismatch of database schema and SML# programs. string is the
error message.

• type backend

The type of the untyped connection information to a database, which is a part of the _sqlserver
expression. One of the following function can be used to write an expression of this type.

• val postgresql : string -> backend

22.8. SQL LIBRARY: THE SQL STRUCTURE 149

SQL.postgresql param returns an connection information to a PostgreSQL server. The string
param is the connection string of libpq, the PostgreSQL library. See the PostgreSQL manual for
defails of the connection string. If param is not valid, the SQL.Connect exception is raised.

The correspondence between the PostgreSQL and SML# types is the following:

PostgreSQL SML#
INT, INT4 int

BOOLEAN bool

TEXT, VARCHAR string

FLOAT8 real

FLOAT4 real32

• val mysql : string -> backend

SQL.mysql param returns a connection information to a MySQL server. The string param con-
sists of the sequences of “key=value” separated by whitespaces. The keys avaliable and their
meanings are the following:

Key Description
host The hostname of a MySQL server
port The port number of a MySQL server
user The user name to log in a MySQL server
password The password of the user
dbname The name of the target database
unix_socket The filename of a UNIX socket
flags The flags of the communication protocol in decimal

dbname is mandatory. See the MySQL manual for details of these parameters. If param is not
valid, the SQL.Connect exception is raised.

The correspondence between the MySQL and SML# types are the following:

MySQL SML#
TINYINT, SMALLINT, MEDIUMINT, INT int

TINYTEXT, TEXT, VARCHAR string

DOUBLE real

FLOAT real32

• val sqlite3 : string -> backend

val sqlite3’ : SQL.SQLite3.flags * string -> backend

SQL.sqlite3 filename and SQL.sqlite3 (flags, filename) return a connection information
to an SQLite3 database file. The string filename indicates the filename. Note that SQLite3
interprets the filenames beginning with “:” in a special way.

flags is a record consisting of the following four fields:

– mode: the open mode of the file, which is one of the following:

∗ SQL.SQLite3.SQLITE_OPEN_READONLY

∗ SQL.SQLite3.SQLITE_OPEN_READWRITE

∗ SQL.SQLite3.SQLITE_OPEN_READWRITE_CREATE

– threading: the threading mode, which is one of the following:

∗ SQL.SQLite3.SQLITE_OPEN_NOMUTEX

∗ SQL.SQLite3.SQLITE_OPEN_FULLMUTEX

– cache: the cache mode, which is one of the following:

∗ SQL.SQLite3.SQLITE_OPEN_SHAREDCACHE

∗ SQL.SQLite3.SQLITE_OPEN_PRIVATECACHE

– uri: the way to interpret the filename, which may be the following:

∗ SQL.SQLite3.SQLITE_OPEN_URI

150 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

See the SQLite3 C/C++ API manual for details of these flags. These constants are defined in the
SQL.SQLite3 structure. In addition, SQL.SQLite3 provides the default flag SQL.SQLite3.flags,
which is used if flags is omitted. A partially modified version of SQL.SQLite3.flags can be
obatained by using the field update expression.

The correspondence between SQLite3’s type affinities and SML#’s type is the following:

Type affinity SML#
INT int

REAL real

STRING string

NUMERIC numeric

BLOB (unsupported)

Each type of columns specified in CREATE TABLE statement is interpreted to a type affinity as
described in the SQLite3 manual.

• val odbc : string -> backen

SQL.odbc param returns a connection information to an ODBC server. The string param consists
of a DSN name, user name, and password in this order separated by whitespaces. If param is not
valid, the SQL.Connect exception is raised.

The correspondence between the ODBC and SML# types is the following

ODBC SML#
CHAR string

INTEGER, SMALLINT int

FLOAT real32

DOUBLE real

VARCHAR, LONGVARCHAR, NVARCHAR string

• val connect : ’a server -> ’a conn

SQL.connect server establishes a connection to the server indicated by the connection description
server. If the connection is established and the schema of the connected database subsumes the
schema represented by server, it returns a connection handle. If a connection error occurs, the
SQL.Exec exception is raised. If the two schemas are not matched, the SQL.Link exception is
raised.

The type of the connection description server represts the type of the tables and views that the
SML# program deals with through this connection. SQL.connect checks the system catalog of
the database so that all tables and views in the type of server exists in the database. The names
of tables and views are case-insensitive during this check. The database may contain tables and
views other than those specified in the type of server. In contrast, for each table in server, its
column set must exactly matches with the actual table definition.

At the first time to connect to a database server, an external library is dynamically linked according
to the kind of the database server. The default name of such libraries are hard-coded. If the library
name is not appropriate, it can be changed by setting environment variables. The following table
shows the default name and environment vairable name for each server kind:

Database Library name Environment variable
PostgreSQL libpq.so.5 SMLSHARP_LIBPQ

MySQL libmysqlclient.16.so SMLSHARP_LIBMYSQLCLIENT

ODBC libodbc.so.2 SMLSHARP_LIBODBC

SQLite3 libsqlite3.so.0 SMLSHARP_LIBSQLITE3

• val connectAndCreate : ’a server -> ’a conn

Same as SQL.connect except for the following: SQL.connectAndCreate creates the tables that are
indicated in the argument type but do not exist in the database by issueing the CREATE TABLE

commands. If a table to be created includes an unsupported type, it raises the SQL.Link exception.
If a CREATE TABLE command fails, it raises the SQL.Exec exception.

• val closeConn : ’a conn -> unit

SQL.closeConn conn closes a database connection. Any connection established by SQL.connect

must be closed by SQL.closeConn.

22.9. SQL LIBRARY: THE SQL.OP STRUCTURE 151

22.8.2 executing SQL queries and retrieving their results

• exception Exec of string

The exception indicating that an error occur during a query execution on a database server. string
is the error message.

• val fetch : ’a cursor -> ’a option

SQL.fetch cursor reads one row pointed by the cursor cursor and move the cursor to the next
row. If the cursor reaches to the end of a table, it returns NONE. If the cursor is already closed, the
SQL.Exec exception is raised.

• val fetchAll : ’a cursor -> ’a list

SQL.fetchAll cursor reads all rows between the cursor cursor and the end of the table and
closes the cursor. If the cursor is already closed, the SQL.Exec exception is raised.

• closeCursor : ’a cursor -> unit

closeCursor cursor closes the given cursor. All cursors must be closed by this function or
fetchAll.

22.8.3 Utilities for SQL Queries

• val queryCommand : (’a list, ’b) query -> (’a cursor, ’b) command

SQL.queryCommand query converts the given SELECT query to a SQL command. This function
performs the same thing as what an SQL execution function _sql ⟨pat⟩ => select...(⟨exp⟩)
does for a query (see Section 22.7) except for the query execution.

• val toy : ((’a, ’c) db -> (’b, ’c) query) -> ’a -> ’b

SQL.toy query data regards data as a database and evaluates the query query on it. The
evaluation is carried out in SML# without involving any server communication. This function
executes a toy program that the SML# compiler generates for the typecheck of SQL queries. Note
that the performance of the toy program is not considered and therefore this function may be
seriously slow.

• val commandToString : ((’a,’c) db -> (’b,’c) command) -> string

SQL.commandToString command returns the serialized string of the SQL command the function
command returns. The string this function returns is identical to the string sent to the server
when the command is executed.

• val queryToString : ((’a,’c) db -> (’b,’c) query) -> string

SQL.queryToString query returns the serialized string of the SELECT query the function query
returns. The string this function returns is identical to the string sent to the server when the query
is executed.

• val expToString : (’a,’c) exp -> string

SQL.expToString exp returns the serialized string of the SQL value expression exp.

22.9 SQL Library: The SQL.Op structure

The SQL.Op structure provides SQL’s infix operators, aggregate functions, and other utilities, all of which
are used for constructing SQL value expressions. In SML#’s SQL value expressions, the infixity of some
identifiers are declared as follows:

infix 7 %

infix 5 like ||

nonfix mod

152 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

In an SQL value expression that is not evaluated by SML#, SQL functions and operators defined in this
structure can be used without any structure prefix.

Almost all of functions defined in SQL.Op is overloaded on multiple SQL basic types (see Section
22.1). In the description, the overloaded type variables and their ranges are indicated by their names as
follows:

• ’sql is one of the SQL basic types or their option types.

• ’sqlopt is the option type of an SQL basic type.

• ’num is one of the SQL basic numeric types or their option types.

• ’str is either string or string option.

• Other type variables range over the set of all types.

The signature of the SQL.Op structure is the following:

structure SQL : sig

· · ·
structure Op : sig

val Some : ’a -> ’a option

val Part : ’a option list -> ’a list

val Num : ’num -> numeric option

val + : ’num * ’num -> ’num

val - : ’num * ’num -> ’num

val * : ’num * ’num -> ’num

val / : ’num * ’num -> ’num

val mod : ’num * ’num -> ’num

val ~: ’num -> ’num

val abs : ’num -> ’num

val < : ’sql * ’sql -> bool3

val > : ’sql * ’sql -> bool3

val <= : ’sql * ’sql -> bool3

val >= : ’sql * ’sql -> bool3

val = : ’sql * ’sql -> bool3

val <> : ’sql * ’sql -> bool3

val || : ’str * ’str -> ’str

val like : ’str * ’str -> bool3

val nullif : ’sqlopt * ’sqlopt -> ’sqlopt

val coalesce : ’b option * ’b -> ’b

val coalesce’ : ’b option * ’b option -> ’b option

val count : ’sql list -> int

val avg : ’num list -> numeric option

val sum : ’num list -> ’num option

val sum’ : ’num option list -> ’num option

val min : ’sql list -> ’sql option

val min’ : ’sql option list -> ’sql option

val max : ’sql list -> ’sql option

val max’ : ’sql option list -> ’sql option

end

end

Each of the following subsections describes the definitions for each category of their purposes.

22.9.1 Workarounds for type inconsistencies

SML# provides the following functions corresponding to implicit type cast. See Subsection 22.4.5 for
details.

• val Some : ’a -> ’a option

22.9. SQL LIBRARY: THE SQL.OP STRUCTURE 153

• val Part : ’a option list -> ’a list

• val Num : ’num -> numeric option

22.9.2 SQL operators and functions

The SQL.Op structure provides the following operators. These operators return an SQL value expression
that concatinates given expressions with the operator. The comparison is not performed until the
constructed query is executed on a database server.

• Comparison operators: <, >, <=, >=, =, <> are provided for any SQL basic types. The type of these
operators is

’sql * ’sql -> bool3

• Arithmetic operators: Five infix operators +, -, *, /, % and two unary operators ~, abs are provided
for any SQL numeric types. In the SQL value expression, % is declared as a infix identifier. The
type of these operators is either

’num * ’num -> ’num

or

’num -> ’num

• Modulo operation: Following the standard SQL, the modulo operator mod is also provided as a
function. Note that some database engines supports only one of mod and %. In the SQL value
expression, mod is declared as a nonfix identifier. The type of mod is

’num * ’num -> ’num

• String operators: The pattern match operator like and string concatination operator || are
available. Both identifiers are infix operators in SQL value expressions. Their types are the
following:

val like : ’str * ’str -> bool3

val || : ’str * ’str -> ’str

• NULLIF: the nullif function of the following type is provided:

val nullif : ’sqlopt * ’sqlopt -> ’sqlopt

Note that the two arguments must be an option type. Use Some if needed.

• COALESCE: Two variants coalesce and coalesce’ are provided because of the option type.

val coalesce : ’b option * ’b -> ’b

val coalesce’ : ’b option * ’b option -> ’b option

In the SQL query sent to a server, both functions have the same name COALESCE. The type
of coalesce is chosen for a paticular use of COALESCE that substitutes NULL value with non-
NULL values. Different from the standard SQL, COALESCE with more than two arguments is
not supported. Nest coalesce’ functions for more than two values.

22.9.3 SQL aggregation functions

count, avg, sum, min, and max are available. Because of the option type, sum, min, and max function has
two variants such as sum and sum’. The name sent to a server is same regardless of the variant chosen.

The type of these functions are the following:

val count : ’sql list -> int

val avg : ’num list -> numeric option

val sum : ’num list -> ’num option

val sum’ : ’num option list -> ’num option

val min : ’sql list -> ’sql option

val min’ : ’sql option list -> ’sql option

val max : ’sql list -> ’sql option

val max’ : ’sql option list -> ’sql option

154 CHAPTER 22. SQL EXPRESSIONS AND COMMANDS

22.10 SQL Library: The SQL.Numeric Structure

The SQL.Numeric structure emulates the NUMERIC type, which is the numeric type with the maximum
precision in the standard SQL.

The following is its signature:

structure SQL : sig

· · ·
structure Numeric : sig

type num = SQL.numeric

val toLargeInt : num -> LargeInt.int

val fromLargeInt : LargeInt.int -> num

val toLargeReal : num -> LargeReal.real

val fromLargeReal : LargeReal.real -> num

val toInt : num -> Int.int

val fromInt : Int.int -> num

val toDecimal : num -> IEEEReal.decimal_approx

val + : num * num -> num

val - : num * num -> num

val * : num * num -> num

val quot : num * num -> num

val rem : num * num -> num

val compare : num * num -> order

val < : num * num -> bool

val <= : num * num -> bool

val > : num * num -> bool

val >= : num * num -> bool

val ~ : num -> num

val abs : num -> num

val toString : num -> string

val fromString : string -> num option

end

end

The meaning of these functions are same as the functions of the same name defined in Int and IntInf

of the Basic Library. Note that toString serializes at most 16,383 digits after the decimal point.
This SQL.Numeric structure is provided just for interaction with database systems and not intended

to be a general infinite-precision decimal arithmetic library. Its performance is not considered and
therefore these functions may be seriously slow.

SQL.decimal and SQL.Decimal are the aliases of SQL.numeric and SQL.Numeric, respectively.

22.11 Difference from the standard SQL (Informative)

SML#’s SQL syntax is designed to be similar to the standard SQL as much as possible so that the
programmer can use it without learning a new embedded language. However, it is inebitable that some
SQL notations cannot be used due to the conflict with the host language syntax. This section summarizes
the difference between SML# and SQL. By paying attention to the following, you can exploit the SML#’s
SQL feature with the standard notation of SQL.

• Constant literals are written in the SML# notation.

• All the keywords must be in small cases in SML#, whereas the keywords of the standard SQL are
case-insensitive,

• The names of tables and columns are case-sensitive in SML#. Only one exception is that names
are compared with ignoring the cases when SQL.connect checks schema.

• The arguments of function applications does not need to be parenthesized as in SML#, whereas
the standard SQL requires the arguments parenthesized.

22.11. DIFFERENCE FROM THE STANDARD SQL (INFORMATIVE) 155

• The unary minus operator is ~, not -.

• The associativity of infix operators are decided by SML#’s infix declarations.

• The logical conjunction operator and may occur only in a parenthesized expression.

• Each column reference must be prefixed with #.

• A table name is required in each column reference.

• When an ORDER BY clause refers to a column of the SELECT clause, the reference must be
prefixed with #..

• Each table name occuring in a FROM clause or an INSERT, UPDATE, or DELETE command
must be prefixed with # and an identifier indicating an database instance, which is typically bound
by an _sql or fn expression.

Chapter 23

Declarations of the core language
and their interfaces

For each declaration (⟨decl⟩), its syntax and the corresponding interface specification are defined, and
describes their static and dynamic values.

23.1 val declarations : ⟨valDecl⟩
Syntax of val declarations is given below.

⟨valDecl⟩ ::= val ⟨tyvarSeq⟩ ⟨valBind⟩
⟨valBind⟩ ::= ⟨valBind1⟩

| ⟨valBind1⟩ and ⟨valBind⟩
⟨valBind1⟩ ::= ⟨pat⟩ = ⟨exp⟩

In this declaration, the variables appearing in patterns ⟨valBind⟩ must be distinct. These variables
are simultaneously defined, whose scope is the entire ⟨valDecl⟩ declaration and the declarations that
follows.

The type variable declaration ⟨tyvarSeq⟩ in ⟨valDecl⟩ delimit their scope. These type variables must
be generalized at the top-level of each ⟨valBind1⟩ declaration.

23.1.1 val declaration interface : ⟨valSpec⟩
For each variable defined in a val declaration, the following form of interface specification must be
declared.

⟨valBindInterface⟩ ::= val ⟨id⟩ : ⟨ty⟩

For example，for val declaration

val (x,y) = (1,2)

the following two interface specification must be given.

val x : int

val y : int

23.1.2 val declaration evaluation

Val declaration of the form

val ⟨pat1⟩ = ⟨exp1⟩ and ⟨pat2⟩ = ⟨exp2⟩ · · ·

is evaluated in the following two steps.

157

158 CHAPTER 23. DECLARATIONS OF THE CORE LANGUAGE AND THEIR INTERFACES

Structured pattern evaluating

A val declaration with a structured pattern ⟨pat⟩ is first transformed to sequence of val declarations for
the set {x1, . . . , xm} of variables in the pattern ⟨pat⟩ .

If the pattern ⟨pat⟩ does not contain constructor or constant, then the transformation is done by
recursively decompose ⟨pati⟩ and ⟨expi⟩ pair to a sequence of pairs of a sub-pattern and a sub-expression.
This is done in the following steps.

1. Each pattern ⟨pati⟩ is decomposed into sub-patterns according to the structure of ⟨pati⟩ . When
⟨pati⟩ has a type constraint, then the corresponding type constraint is attached to each of the
decomposed sub-patterns.

2. For each decomposed sub-pattern of ⟨pati⟩ , the corresponding sub-expression is generated from
the expression ⟨expi⟩ by applying the code to extract the corresponding value to ⟨expi⟩ .

3. If a sub-pattern is a layered pattern of the form id as pat , the additional code to bind id to the
entire value is generated.

4. Finally, the following from of val declarations is generated from the sequence of pairs of a variable
and an expression obtained from the above transformation steps.

val x1 (: τ1)? = exp1

· · ·
and xm (: τm)? = expm

This decomposition process enables the variables in structured patterns to have rank-1 polymorphic
types as far as possible. However, the above transformation cannot be applied to val declarations with
constructors and constants, since these val declarations may raise exception at runtime. A val declaration
containing constructors and constants is transformed to the following val declaration with a variable.

val X = case (⟨exp1⟩ , . . ., ⟨expn⟩) of

(⟨pat1⟩ , . . ., ⟨patn⟩) => (x1,. . .,xm)

| _ => raise Bind

val x1 = #1 X
· · ·

and xm = #m X

23.1.3 Example of val declarations and interface

The following are simple examples in the interactive mode.

val (x,y) = (print "SML#\n", fn x => fn y => (x,y));

SML#

val x = () : unit

val y = fn : [’a. ’a -> [’b. ’b -> ’a * ’b]]

val (z, w, 1) = (print "SML#\n", fn x => fn y => (x,y), 1);

(interactive):2.8-2.8 Warning:

(type inference 065) dummy type variable(s) are introduced due to value

restriction in: y

(interactive):2.4-2.57 Warning: binding not exhaustive

(x, y, 1) => ...

SML#

val z = () : unit

val w = fn : fn : ?X7 -> ?X6 -> ?X7 * ?X6

The following is a simple example of a source file and an interface file in separate compilation.

23.2. FUNCTION DECLARATIONS : ⟨VALRECDECL⟩ , ⟨FUNDECL⟩ 159

Version.sml file:

val (version, releaseDate) = ("4.0.0", "2021-04-06")

Version.smi file:

val version : string

val releaseDate : string

23.2 Function declarations : ⟨valRecDecl⟩ , ⟨funDecl⟩
Syntax of function declarations has the following two forms ⟨valRecDecl⟩ and ⟨funDecl⟩ .

⟨valRecDecl⟩ ::= val rec ⟨tyvarSeq⟩ ⟨valBind⟩
⟨funDecl⟩ ::= fun ⟨tyvarSeq⟩ ⟨funBind⟩
⟨funBind⟩ ::= ⟨funBind1⟩

| ⟨funBind1⟩ and ⟨funBind⟩
⟨funBind1⟩ ::= (op)? ⟨vid⟩ ⟨atpat11⟩ · · · ⟨atpat1n⟩ (: ⟨ty⟩)? = ⟨exp1⟩ (m,n ≥ 1)

| (op)? ⟨vid⟩ ⟨atpat21⟩ · · · ⟨atpat2n⟩ (: ⟨ty⟩)? = ⟨exp2⟩
| · · ·
| (op)? ⟨vid⟩ ⟨atpatm1⟩ · · · ⟨atpatmn⟩ (: ⟨ty⟩)? = ⟨expm⟩

These declarations define mutual recursive functions. The scope of the function names being defined
is the entire declaration and the declarations that follow.

val declarations of ⟨valBind⟩ in ⟨valRecDecl⟩ are restricted to those that have the following syntactic
form:

⟨vid⟩ = fn expression

The identifiers (function names) ⟨vid⟩ appearing in the same ⟨funBind1⟩ must be the same, and func-
tion names appearing in different ⟨funBind1⟩ s must be pair-wise distinct. As in ⟨valBind1⟩ , variables
contained in patterns ⟨pat⟩ in the same ⟨funBind1⟩ must be pair-wise distinct.

In evaluation of these declarations, function names (⟨vid⟩) are bound to the same (static and dy-
namic) values as the corresponding functions.

The type variable declaration ⟨tyvarSeq⟩ in ⟨valBind⟩ and ⟨funDecl⟩ delimit their scope. These
type variables must be generalized at the top-level of each ⟨valBind1⟩ of ⟨valBind⟩ and ⟨funBind1⟩ .

23.2.1 Function declaration interface

Function declaration interface is the same as val declaration interface. Each function name defined in
the function declaration and its type are specified in the same syntax of val declaration specification.
The following is an example of a source file and an interface file containing function declarations.

Bool.sml file:

fun not true = false

| not false = true

fun toString true = "true"

| toString false = "false"

Bool.smi file:

val not : bool -> bool

val toString : bool -> string

23.3 datatype declaration : ⟨datatypeDecl⟩
datatype declarations define new type constructors. Its syntax is given below.

160 CHAPTER 23. DECLARATIONS OF THE CORE LANGUAGE AND THEIR INTERFACES

⟨datatypeDecl⟩ ::= datatype ⟨datbind⟩ (withtype ⟨tybind⟩)?
⟨datbind⟩ ::= (⟨tyvarSeq⟩)? ⟨tycon⟩ = ⟨conbind⟩ (and ⟨datbind⟩)?
⟨conbind⟩ ::= (op)? ⟨vid⟩ (of ⟨ty⟩)? (| ⟨conbind⟩)?
⟨tybind⟩ ::= ⟨tyvarSeq⟩ ⟨tycon⟩ = ⟨ty⟩ (and ⟨tybind⟩)?

The set of type constructor names ⟨tycon⟩ must be pair-wise distinct, and the data constructor names
in the same ⟨conbind⟩ must be pair-wise distinct. This defines the set of mutually recursive new type
constructors ⟨tycon⟩ , and data constructors ⟨vid⟩ . If ⟨tycon⟩ has optional (⟨tyvarSeq⟩)? declaration,
then it is a polymorphic type constructor with type parameters ⟨tyvarSeq⟩ . The scope of ⟨tycon⟩ include
the entire ⟨datatypeDecl⟩ .

23.3.1 datatype declaration interface

Interface of datatype declaration is either datatype specification or opaque type specification. Syntax of
datatype specification is the same as datatype declarations. Opaque type specification has the following
syntax.

⟨opequeTypeSpec⟩ ::= type (⟨tyvarSeq⟩)? ⟨tycon⟩ (= ⟨runtimeTypeSpec⟩)

⟨runtimeTypeSpec⟩ := unit | contag | boxed

A datatype specification defines the type constructors and data constructors of the corresponding
datatype declaration, and makes them available to the compilation units that reference this interface
through _require. An opaque type specification must defines the type constructor of the corresponding
datatype declaration as an opaque type, and makes it available to the compilation units that reference
this interface through _require. The operand of a opaque type specification specifies the runtime rep-
resentation of values of the type. It is either unit, contag, or boxed. unit and contag indicates that
all the datatype constructors have no argument. unit indicates that the type consists only of a single
constructor. contag means that there are multiple constructors. boxed indicates that the runtime rep-
resentation is a pointer. This must be specified for a datatype constructor that has a constructor with
augment.

23.3.2 Examples

The following are examples of datatype declarations and their interface.

Data.sml file:

datatype ’a list = nil | :: of ’a * ’a list

datatype ’a queue = QUEUE of ’a list * ’a list

Data.smi file:

datatype ’a list = nil | :: of ’a * ’a list

type ’a queue (= boxed)

23.4 Type declaration : ⟨typDecl⟩
Type declaration define a name of a type. Its syntax is given below.

⟨typeDecl⟩ := type ⟨typbind⟩
⟨tybind⟩ ::= ⟨tyvarSeq⟩ ⟨tycon⟩ = ⟨ty⟩ (and ⟨tybind⟩)?

23.4.1 type specification : ⟨typSpec⟩
Interface of type declaration is either type specification or opaque type specification. Syntax of type
specification is the same as type declaration. Opaque type specification has the following syntax.

⟨opequeTypeSpec⟩ := type (⟨tyvarSeq⟩)? ⟨tycon⟩ (= ⟨runtimeTypeSpec⟩)

⟨runtimeTypeSpec⟩ := ⟨tycon⟩ | {} | * | ->

23.5. EXCEPTION DECLARATION : ⟨EXNDECL⟩ 161

If the type is implemented by a record type, tuple type, or function type, ⟨runtimeTypeSpec⟩ must be {},
*, or ->, respectively. Otherwise, ⟨runtimeTypeSpec⟩ must be the type constructor that implements the
type. ⟨runtimeTypeSpec⟩ may not be identical to the implmentation type if the runtime representation
of ⟨runtimeTypeSpec⟩ is matched with that of the implementation type. See Chapter 29 for details of
the runtime representation.

23.4.2 Examples

The following are examples of type declarations and their interface.

Data.sml file:

type ’a set = ’a list

type ’a queue = ’a list * ’a list

type index = int

type id = int

Data.smi file:

type ’a set (= list)

type ’a queue (= *)

type index = int

type id (= int)

23.5 Exception declaration : ⟨exnDecl⟩
Syntax of exception declaration is given below.

⟨exnDecl⟩ ::= exception ⟨exbind⟩
⟨exbind⟩ ::= (op)? ⟨vid⟩ (of ⟨ty⟩)? (and ⟨exbind⟩)?

This defines an exception constructor optionally with an argument of type ⟨ty⟩ .

23.5.1 Exception specification : ⟨exnSpec⟩
Syntax of exception specification is the same as exception declaration.

23.5.2 Examples

The following are examples of exception declarations and their interface.

Data.sml file:

exception Fail of string

Data.smi file:

exception Fail of string

Chapter 24

Module language declarations and
interface

For each declaration (⟨decl⟩), its syntax and the corresponding interface specification are defined, and
describes their static and dynamic values.

24.1 Structure declarations : ⟨strDecl⟩
Syntax for structure declaration is given below.

⟨strDecl⟩ := structure ⟨strbind⟩
⟨strbind⟩ ::= ⟨strid⟩ = ⟨strexp⟩ (and ⟨strbind⟩)?

| ⟨strid⟩ : ⟨sigexp⟩ = ⟨strexp⟩ (and ⟨strbind⟩)?
| ⟨strid⟩ :> ⟨sigexp⟩ = ⟨strexp⟩ (and ⟨strbind⟩)?

If there are multiple bindings separated with and then the structure names are bound simultaneously,
whose scope is the rest of declarations that follow this declaration. So, in the following example, y is
bound to 2 and not 1.

structure A = struct val a = 1 end;

structure B = struct val b = 1 end;

structure A = struct val a = 2 end and B = struct val b = A.a end;

val x = A.a;

val y = B.b;

Binding structure names with signature constraints are translated to binding to structure expressions
with signature constraints as follows.

source translated to
⟨strid⟩ : ⟨sigexp⟩ = ⟨strexp⟩ ⟨strid⟩ = ⟨strexp⟩ : ⟨sigexp⟩
⟨strid⟩ :> ⟨sigexp⟩ = ⟨strexp⟩ ⟨strid⟩ = ⟨strexp⟩ :> ⟨sigexp⟩

Evaluation of a structure declaration is done as follows.

1. Evaluate the structure expression and obtain a static type environment Γ and a runtime environ-
ment E, as defined in the following section.

2. Obtain Γ′ and E′ from Γ′ and E′ by prefixing the long names defined in them with the structure
name S, and add them to the current environments.

For example, if structure expression ⟨strexp⟩ generates a static type environment {longId1 : τ1, ..., longidn :
τn} and a runtime value environment {longId1 : v1, ..., longidn : vn}, then evaluating the structure
declaration structure ⟨strid⟩ = ⟨strexp⟩ has the effect of extending the current type environment
and runtime environment with the bindings {S.longId1 : τ1, ..., S.longidn : τn} and {S.longId1 :
v1, ..., S.longidn : vn}.

163

164 CHAPTER 24. MODULE LANGUAGE DECLARATIONS AND INTERFACE

24.2 Structure expressions and their evaluation : ⟨strexp⟩
Syntax for structure expressions is given below.

⟨strexp⟩ ::= struct ⟨strdec⟩ end

| ⟨longStrid⟩
| ⟨strexp⟩ : ⟨sigexp⟩
| ⟨strexp⟩ :> ⟨sigexp⟩
| ⟨funid⟩ (⟨strid⟩ : ⟨sigexp⟩)
| ⟨funid⟩ (⟨strdec⟩)

⟨strdec⟩ ::= ⟨decl⟩ core language declaration
| structure ⟨strbind⟩
| local ⟨strdec⟩ in ⟨strdec⟩ end

| ⟨strdec⟩ (;)? ⟨strdec⟩

Each of the structure expressions are evaluated as follows.

• Basic structure expression : struct ⟨strdec⟩ end.

Evaluation of a basic structure expression is done by evaluating the sequence of declarations
⟨strdec⟩ . For core language declarations, bindings of variables and type constructors are gen-
erated according to the definition in Chapter 23. For structure declarations, long name bindings
are generated according to the evaluation rule stated above.

• Long structure identifier : ⟨longStrId⟩ .
Evaluation of this yields the type environment and the runtime environment ⟨longStrId⟩ is bound
to in the current environments.

• Structure expressions with signature constraints. (⟨strexp⟩ : ⟨sigexp⟩ , ⟨strexp⟩ :> ⟨sigexp⟩)
Evaluation of a structure expression with signature constraint is done as follows.

1. Evaluate the structure expression and obtain a static type environment Γ.

2. Evaluate the signature expression according to the definition in the following subsection (24.3)
and obtain a set Σ of static constraints of long names.

3. For each long name constraint in Σ, check whether the corresponding long name binding exists
in Γ and its static value conforms to the constraint.

4. Obtain a static type environment Γ′ by restricting the set of long names to those in Σ.

5. If the signature constraint is an opaque constraint of the form ⟨strexp⟩ :> ⟨sigexp⟩ , then
obtain Γ′′ from Γ′ by replacing each type constructor corresponding to type spec ⟨typdesc⟩
in ⟨sigexp⟩ with an abstract type constructor.

6. For constructing a runtime environment, dynamic value generation is the same as the structure
expression without signature constraints, but the bound long names are restricted to those
specified in Γ′′.

24.3 Signature expression : ⟨sigexp⟩
The syntax of signature expression is given below.

⟨sigexp⟩ ::= sig ⟨spec⟩ end

| ⟨sigid⟩
| ⟨sigexp⟩ where type ⟨tyvarSeq⟩ ⟨longTycon⟩ = ⟨ty⟩

• Basic signature expression (sig ⟨spec⟩ end)

It is a list of declaration specification

• Signature name (⟨sigid⟩)
It is a name bound to a signature expression in a top-level signature declaration.

24.3. SIGNATURE EXPRESSION : ⟨SIGEXP⟩ 165

• Signature name with type definitions

It represent the signature expression obtained from the signature expression bound to ⟨sigin⟩ by
replacing ⟨tyvarSeq⟩ ⟨longTycon⟩ with the specified ⟨ty⟩ .

The syntax of declaration specification ⟨spec⟩ is given below.

⟨spec⟩ ::= val ⟨valdesc⟩
| type ⟨typdesc⟩
| eqtype ⟨typdesc⟩
| datatype ⟨datdesc⟩
| datatype ⟨tycon⟩ = datatype ⟨longTycon⟩
| exception ⟨exdesc⟩
| structure ⟨strdesc⟩
| include ⟨sigexp⟩
| ⟨spec⟩ sharing type ⟨longTycon1⟩ = · · · = ⟨longTyconn⟩
| ⟨spec⟩ (;)? ⟨spec⟩
|

⟨valdesc⟩ ::= ⟨vid⟩ : ⟨ty⟩ (and ⟨valdesc⟩)?
⟨typdesc⟩ ::= ⟨tyvarSeq⟩ ⟨tycon⟩ (and ⟨typdesc⟩)?
⟨datdesc⟩ ::= ⟨tyvarSeq⟩ ⟨tycon⟩ = ⟨condesc⟩ (and ⟨datdesc⟩)?
⟨condesc⟩ ::= ⟨vid⟩ (of ⟨ty⟩)? (| ⟨condesc⟩)?
⟨exdesc⟩ ::= ⟨vid⟩ (of ⟨ty⟩)? (and ⟨exdesc⟩)?
⟨strdesc⟩ ::= ⟨strid⟩ : ⟨sigexp⟩ (and ⟨strdesc⟩)?

The meaning of each of components is as follows.

• val ⟨valdesc⟩ . This specifies the type of each variable bound in a val declaration.

• type ⟨typdesc⟩ . This specifies the existence of a type declaration or datatype declaration in a
structure expression.

When the signature is used as a transparent signature constraint, then this specification makes the
type function available. If the matching declaration is a datatype declaration, then this specification
makes the type constructor available, but data constructors are not bound.

When the signature is used as an opaque signature constraint, then this specification changes a
type function or a datatype definition to an abstract type constructor.

• eqtype ⟨typdesc⟩
This is the same as type ⟨typdesc⟩ with the additional constraint that the type declared in a
structure is restricted to a type that admit equality.

• datatype ⟨datdesc⟩
This specifies that a datatype declaration exists, and makes the datatype declaration available.

• datatype ⟨tycon⟩ = datatype ⟨longTycon⟩
It specifies that the type constructor bound to the type constructor name ⟨tycon⟩ is the same as
that bound to the long type constructor name ⟨longTycon⟩ .

• exception ⟨exdesc⟩
This specifies that an exception declaration exists, and makes the exception declaration available.

• structure ⟨strdesc⟩
It specifies that the structure contain a structure declaration of the specified signature.

• include

It expands to the contents (a list of ⟨spec⟩) of the signature expression bound to the signature
name.

• sharing type

This specifies that the specified set of long type constructor names are bound to the same type
constructor.

166 CHAPTER 24. MODULE LANGUAGE DECLARATIONS AND INTERFACE

24.4 Module language interface

As defined in Section 16.2, module language interface consists of t provides for structures (⟨provideStr⟩)
and for functors (⟨provideFun⟩), whose syntax is given below.

⟨provideStr⟩ ::= structure ⟨strid⟩ = struct ⟨provideStrdecl⟩ end

⟨provideStrdecl⟩ ::= ⟨provideVal⟩
| ⟨provideType⟩
| ⟨provideDatatype⟩
| ⟨provideException⟩
| ⟨provideStr⟩

⟨provideFun⟩ ::= functor ⟨provideFunBind⟩
⟨provideFunBind⟩ ::= ⟨funid⟩ (⟨strdesc⟩) = ⟨provideStrExp⟩

The following are examples of structure declarations and their interface.

Bool.sml file:

structure Bool =

struct

datatype bool = false | true

fun not true = false

| not false = true

fun toString true = "true"

| toString false = "false"

end

Bool.smi file:

structure Bool =

struct

datatype bool = false | true

val not : bool -> bool

val toString : bool -> string

end

Chapter 25

Overview of SML# Libraries

As a functional language, SML# provides various data structures and their operations through a struc-
ture declaration containing types and function definitions. Related structures are bundled together in a
source file (sml file) with an interface file (smi file) through SML# separate compilation system. In this
document, we call a group of structures represented by an interface file as a library. Related libraries
are hierarchically organized through _include statement of the SML# interface language.

The set of libraries provided by SML# are classified into the following categories.

• Standard ML Basis Library

This is a standard library for Standard ML language specified in [2]. It provides primitive functions
for built-in data types IO primitives, and OS interface. SML# provides all the required structures
of Standard ML Basis Library and some optional ones.

• SML# Library

They include the following support libraries for the SML# advanced features.

– FFI library

– SQL library

– Thread library

– Reify library

• Miscellaneous utilities

They provide various useful functions.

– SML New Jersey Library

• Tool support libraries

They are libraries for using SML# programming tools in SML# programs. They include the
following.

– smlyacc and smllex support libraries

– Printer generator SMLFormat support library

– Unit test tool SMLUnit support Library

In this document, we define a library specification in the following format.

• For the libraries such as those of Standard ML Basis Library for which a formal signature is define,
we first show the signature and then for each structure that implements the signature, we give
additional type instantiation information that are not represented by the signature.

• For those that have no signature specification, we show their interface information. An interface
contains type information for separate compilation that are not represented by the signature.

167

Chapter 26

Standard ML Basis Library

SML# provide all the required libraries defined in Standard ML Basis Library specifications [2]. All the
structures have signature specifications. In the following sections, we first define the formal signatures.
For each signature specification, we define the set of structures that implement the signature with addi-
tional type information. The details of the semantics of functions, we refer the reader to the specification
of the Standard ML Basis Library [2].

The following are the (top-level) signatures and structures provided by SML#.

Signature Name Structures that implements the signature section
ARRAY Array (26.1)
ARRAY_SLICE ArraySlice (26.2)
BIN_IO BinIO (26.3)
BOOL Bool (26.6)
BYTE Byte (26.7)
CHAR Char (26.8)
COMMAND_LINE Commandline (26.9)
DATE Date (26.10)
GENERAL General (26.11)
IEEE_REAL IEEEReal (26.12)
INTEGER Int, Int64, Int32, Int16, Int8, Position, LargeInt (26.14)
INT_INF IntInf (26.15)
IO IO (26.13)
LIST List (26.16)
LIST_PAIR ListPair (26.17)
MONO_ARRAY CharArray, Word8Array (26.18)
MONO_ARRAY_SLICE CharArraySlice, Word8ArraySlice (26.19)
MONO_VECTOR CharVector, Word8Vector (26.20)
MONO_VECTOR_SLICE CharVectorSlice, Word8VectorSlice (26.21)
OPTION Option (26.22)
OS Os (26.23)
PRIM_IO BinPrimIO, TextPrimIO (26.36)
REAL Real, Real32, Real64 (26.28)
STRING String (26.30)
STRING_CVT StringCvt (26.31)
SUBSTRING Substring (26.32)
TEXT Text (26.33)
TEXT_IO TextIO (26.34)
TIME Time (26.37)
TIMER Timer (26.38)
VECTOR Vector (26.39)
VECTOR_SLICE VectorSlice (26.40)
WORD Word, Word64, Word32, Word16, Word8, LargeWord (26.41)

The set of interface files of all the structures in the basis library described in this chapter are hier-
archically organized and are included in the interface file basis.smi. Writing the following declaration

169

170 CHAPTER 26. STANDARD ML BASIS LIBRARY

in an interface file of a source file makes all the basis library structures and signatures available to the
source program.

_require "basis.smi"

26.1 ARRAY

This structure provides a set of operations for the built-in type τ array.

Signature

signature ARRAY =

sig

type ’a array = ’a array

type ’a vector = ’a Vector.vector

val all : (’a -> bool) -> ’a array -> bool

val app : (’a -> unit) -> ’a array -> unit

val appi : (int * ’a -> unit) -> ’a array -> unit

val array : int * ’a -> ’a array

val collate : (’a * ’a -> order) -> ’a array * ’a array -> order

val copy : {src : ’a array, dst : ’a array, di : int} -> unit

val copyVec : {src : ’a vector, dst : ’a array, di : int} -> unit

val exists : (’a -> bool) -> ’a array -> bool

val find : (’a -> bool) -> ’a array -> ’a option

val findi : (int * ’a -> bool) -> ’a array -> (int * ’a) option

val foldl : (’a * ’b -> ’b) -> ’b -> ’a array -> ’b

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a array -> ’b

val foldr : (’a * ’b -> ’b) -> ’b -> ’a array -> ’b

val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a array -> ’b

val fromList : ’a list -> ’a array

val length : ’a array -> int

val maxLen : int

val modify : (’a -> ’a) -> ’a array -> unit

val modifyi : (int * ’a -> ’a) -> ’a array -> unit

val sub : ’a array * int -> ’a

val tabulate : int * (int -> ’a) -> ’a array

val update : ’a array * int * ’a -> unit

val vector : ’a array -> ’a vector

end

Structures that implement the signature

• Array:ARRAY.

26.2 ARRAY SLICE

It provides a opaque data type for sub-rage of array, array slice, and a set of primitive for the type.

signature ARRAY_SLICE =

sig

type ’a slice

val length : ’a slice -> int

val all : (’a -> bool) -> ’a slice -> bool

val app : (’a -> unit) -> ’a slice -> unit

val appi : (int * ’a -> unit) -> ’a slice -> unit

val base : ’a slice -> ’a Array.array * int * int

val collate : (’a * ’a -> order) -> ’a slice * ’a slice -> order

val copy : {src : ’a slice, dst : ’a Array.array, di : int} -> unit

26.3. BIN IO 171

val copyVec : {src : ’a VectorSlice.slice, dst : ’a Array.array, di : int} -> unit

val exists : (’a -> bool) -> ’a slice -> bool

val find : (’a -> bool) -> ’a slice -> ’a option

val findi : (int * ’a -> bool) -> ’a slice -> (int * ’a) option

val foldl : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val foldr : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val full : ’a Array.array -> ’a slice

val getItem : ’a slice -> (’a * ’a slice) option

val isEmpty : ’a slice -> bool

val modify : (’a -> ’a) -> ’a slice -> unit

val modifyi : (int * ’a -> ’a) -> ’a slice -> unit

val slice : ’a Array.array * int * int option -> ’a slice

val sub : ’a slice * int -> ’a

val subslice : ’a slice * int * int option -> ’a slice

val update : ’a slice * int * ’a -> unit

val vector : ’a slice -> ’a Vector.vector

end

Structures that implement the signature

• ArraySlide : ARRAY_SLICE

type ’a slice (= boxed)

26.3 BIN IO

This provide binary IO primitives. It is defined as an extension of IMPERATIVE_IO (26.4) signature.

signature BIN_IO =

sig

include IMPERATIVE_IO

where type StreamIO.elem = Word8.word

where type StreamIO.pos = BinPrimIO.pos

where type StreamIO.reader = BinPrimIO.reader

where type StreamIO.writer = BinPrimIO.writer

where type StreamIO.vector = Word8Vector.vector

val openAppend : string -> outstream

val openIn : string -> instream

val openOut : string -> outstream

end

Structures that implement the signature

• BinIO :> BIN_IO

structure StreamIO = struct

type elem = word8

type instream (= boxed)

type out_pos (= boxed)

type outstream (= boxed)

type pos = Position.int

type reader (= boxed)

type vector = word8 vector

type writer (= boxed)

end

type elem = word8

type instream (= boxed)

172 CHAPTER 26. STANDARD ML BASIS LIBRARY

type outstream (= boxed)

type vector = word8 vector

26.4 IMPERATIVE IO

signature IMPERATIVE_IO =

sig

structure StreamIO : STREAM_IO

type elem = StreamIO.elem

type instream

type outstream

type vector = StreamIO.vector

val canInput : instream * int -> int option

val closeIn : instream -> unit

val closeOut : outstream -> unit

val endOfStream : instream -> bool

val flushOut : outstream -> unit

val getInstream : instream -> StreamIO.instream

val getOutstream : outstream -> StreamIO.outstream

val getPosOut : outstream -> StreamIO.out_pos

val input : instream -> vector

val input1 : instream -> elem option

val inputAll : instream -> vector

val inputN : instream * int -> vector

val lookahead : instream -> elem option

val mkInstream : StreamIO.instream -> instream

val mkOutstream : StreamIO.outstream -> outstream

val output : outstream * vector -> unit

val output1 : outstream * elem -> unit

val setInstream : instream * StreamIO.instream -> unit

val setOutstream : outstream * StreamIO.outstream -> unit

val setPosOut : outstream * StreamIO.out_pos -> unit

end

Nested signatures

• STREAM_IO(26.5)

26.5 STREAM IO

signature STREAM_IO =

sig

type elem

type instream

type out_pos

type outstream

type pos

type reader

type vector

type writer

val canInput : instream * int -> int option

val closeIn : instream -> unit

val closeOut : outstream -> unit

val endOfStream : instream -> bool

val filePosIn : instream -> pos

val filePosOut : out_pos -> pos

26.6. BOOL 173

val flushOut : outstream -> unit

val getBufferMode : outstream -> IO.buffer_mode

val getPosOut : outstream -> out_pos

val getReader : instream -> reader * vector

val getWriter : outstream -> writer * IO.buffer_mode

val input : instream -> vector * instream

val input1 : instream -> (elem * instream) option

val inputAll : instream -> vector * instream

val inputN : instream * int -> vector * instream

val mkInstream : reader * vector -> instream

val mkOutstream : writer * IO.buffer_mode -> outstream

val output : outstream * vector -> unit

val output1 : outstream * elem -> unit

val setBufferMode : outstream * IO.buffer_mode -> unit

val setPosOut : out_pos -> outstream

end

26.6 BOOL

It provide boolean data type and its primitives.

signature BOOL =

sig

type bool = bool

val fromString : string -> bool option

val not : bool -> bool

val scan : (char, ’a) StringCvt.reader -> (bool, ’a) StringCvt.reader

val toString : bool -> string

end

Structures that implement the signature

• Bool : BOOL

26.7 BYTE

A support library for converting character and byte data.

signature BYTE =

sig

val byteToChar : word8 -> char

val bytesToString : Word8Vector.vector -> string

val charToByte : char -> word8

val packString : Word8Array.array * int * substring -> unit

val stringToBytes : string -> Word8Vector.vector

val unpackString : Word8ArraySlice.slice -> string

val unpackStringVec : Word8VectorSlice.slice -> string

end

Structures that implement the signature

• Byte : BYTE

26.8 CHAR

Provide primitives for character data.

174 CHAPTER 26. STANDARD ML BASIS LIBRARY

signature CHAR =

sig

eqtype char

eqtype string

val < : char * char -> bool

val <= : char * char -> bool

val > : char * char -> bool

val >= : char * char -> bool

val chr : int -> char

val compare : char * char -> order

val contains : string -> char -> bool

val fromCString : string -> char option

val fromString : string -> char option

val isAlpha : char -> bool

val isAlphaNum : char -> bool

val isAscii : char -> bool

val isCntrl : char -> bool

val isDigit : char -> bool

val isGraph : char -> bool

val isHexDigit : char -> bool

val isLower : char -> bool

val isPrint : char -> bool

val isPunct : char -> bool

val isSpace : char -> bool

val isUpper : char -> bool

val maxChar : char

val maxOrd : int

val minChar : char

val notContains : string -> char -> bool

val ord : char -> int

val pred : char -> char

val scan : (Char.char, ’a) StringCvt.reader -> (char, ’a) StringCvt.reader

val succ : char -> char

val toCString : char -> string

val toLower : char -> char

val toString : char -> string

val toUpper : char -> char

end

Structures that implement the signature

• Char : CHAR

26.9 COMMAND LINE

Provide command line data for a executable program written in SML#.

signature COMMAND_LINE =

sig

val arguments : unit -> string list

val name : unit -> string

end

Structures that implement the signature

• CommandLine : COMMANDLINE

26.10. DATE 175

26.10 DATE

Provide date data structures and their primitives.

signature DATE =

sig

datatype weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

datatype month = Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec

type date

exception Date

val compare : date * date -> order

val date : {year : int,

month : month,

day : int,

hour : int,

minute : int,

second : int,

offset : Time.time option} -> date

val day : date -> int

val fmt : string -> date -> string

val fromString : string -> date option

val fromTimeLocal : Time.time -> date

val fromTimeUniv : Time.time -> date

val hour : date -> int

val isDst : date -> bool option

val localOffset : unit -> Time.time

val minute : date -> int

val month : date -> month

val offset : date -> Time.time option

val scan : (char, ’a) StringCvt.reader -> (date, ’a) StringCvt.reader

val second : date -> int

val toString : date -> string

val toTime : date -> Time.time

val weekDay : date -> weekday

val year : date -> int

val yearDay : date -> int

end

Structures that implement the signature

• Date :> DATE

type date (= boxed)

26.11 GENERAL

Provide primitives for reference type and exception type, and commonly used exception names.

signature GENERAL =

sig

type exn = exn

datatype order = datatype order

eqtype unit

exception Bind

exception Chr

exception Div

exception Domain

exception Fail of string

exception Match

176 CHAPTER 26. STANDARD ML BASIS LIBRARY

exception Overflow

exception Size

exception Span

exception Subscript

val ! : ’a ref -> ’a

val := : ’a ref * ’a -> unit

val before : ’a * unit -> ’a

val exnMessage : exn -> string

val exnName : exn -> string

val ignore : ’a -> unit

val o : (’b -> ’c) * (’a -> ’b) -> ’a -> ’c

end

Structures that implement the signature

• General : GENERAL

26.12 IEEE REAL

Provide floating-point number representations in IEEE standard.

signature IEEE_REAL =

sig

type decimal_approx = {class : float_class,

sign : bool,

digits : int list,

exp : int}

datatype float_class = NAN | INF | ZERO | NORMAL | SUBNORMAL

datatype real_order = LESS | EQUAL | GREATER | UNORDERED

datatype rounding_mode = TO_NEAREST | TO_NEGINF | TO_POSINF | TO_ZERO

exception Unordered

val fromString : string -> decimal_approx option

val getRoundingMode : unit -> rounding_mode

val scan : (char, ’a) StringCvt.reader -> (decimal_approx, ’a) StringCvt.reader

val setRoundingMode : rounding_mode -> unit

val toString : decimal_approx -> string

end

Structures that implement the signature

• IEEEReal : IEEE_REAL

26.13 IO

This structure defines common exceptions and data for IO processing.

signature IO =

sig

exception BlockingNotSupported

exception ClosedStream

exception Io of {name : string, function : string, cause : exn}

exception NonblockingNotSupported

exception RandomAccessNotSupported

datatype buffer_mode = NO_BUF | LINE_BUF | BLOCK_BUF

end

Structures that implement the signature

• IO : IO

26.14. INTEGER 177

26.14 INTEGER

This provides primitives for signed integers.

signature INTEGER =

sig

eqtype int

val * : int * int -> int

val + : int * int -> int

val - : int * int -> int

val < : int * int -> bool

val <= : int * int -> bool

val > : int * int -> bool

val >= : int * int -> bool

val abs : int -> int

val compare : int * int -> order

val div : int * int -> int

val fmt : StringCvt.radix -> int -> string

val fromInt : Int.int -> int

val fromLarge : LargeInt.int -> int

val fromString : string -> int option

val max : int * int -> int

val maxInt : int option

val min : int * int -> int

val minInt : int option

val mod : int * int -> int

val precision : Int.int option

val quot : int * int -> int

val rem : int * int -> int

val sameSign : int * int -> bool

val scan : StringCvt.radix -> (char, ’a) StringCvt.reader -> (int, ’a) StringCvt.reader

val sign : int -> Int.int

val toInt : int -> Int.int

val toLarge : int -> LargeInt.int

val toString : int -> string

val ~ : int -> int

end

INTEGERシグネチャを実装．

Structures that implement the signature

• Int : INTEGER

type int = int

Int32 and Position are structure replications of Int.

• Int64 : INTEGER

type int = int64

LargeInt is a structure replication of Int64.

• Int8 : INTEGER

type int = int8

178 CHAPTER 26. STANDARD ML BASIS LIBRARY

26.15 INT INF

Primitive

signature INT_INF =

sig

include INTEGER

val << : int * Word.word -> int

val andb : int * int -> int

val divMod : int * int -> int * int

val log2 : int -> Int.int

val notb : int -> int

val orb : int * int -> int

val pow : int * Int.int -> int

val quotRem : int * int -> int * int

val xorb : int * int -> int

val ~>> : int * Word.word -> int

end

Structures that implement the signature

• IntInf : INT_INF

type int = intInf

26.16 LIST

This provide primitive functions for the built-in list datatype.

signature LIST =

sig

type ’a list = ’a list

exception Empty

val @ : ’a list * ’a list -> ’a list

val all : (’a -> bool) -> ’a list -> bool

val app : (’a -> unit) -> ’a list -> unit

val collate : (’a * ’a -> order) -> ’a list * ’a list -> order

val concat : ’a list list -> ’a list

val drop : ’a list * int -> ’a list

val exists : (’a -> bool) -> ’a list -> bool

val filter : (’a -> bool) -> ’a list -> ’a list

val find : (’a -> bool) -> ’a list -> ’a option

val foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

val foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

val getItem : ’a list -> (’a * ’a list) option

val hd : ’a list -> ’a

val last : ’a list -> ’a

val length : ’a list -> int

val map : (’a -> ’b) -> ’a list -> ’b list

val mapPartial : (’a -> ’b option) -> ’a list -> ’b list

val nth : ’a list * int -> ’a

val null : ’a list -> bool

val partition : (’a -> bool) -> ’a list -> ’a list * ’a list

val rev : ’a list -> ’a list

val revAppend : ’a list * ’a list -> ’a list

val tabulate : int * (int -> ’a) -> ’a list

val take : ’a list * int -> ’a list

val tl : ’a list -> ’a list

end

26.17. LIST PAIR 179

Structures that implement the signature

• List : LIST

type ’a list = ’a list

26.17 LIST PAIR

Provide generic functions for manipulating pair of lists.

signature LIST_PAIR =

sig

exception UnequalLengths

val all : (’a * ’b -> bool) -> ’a list * ’b list -> bool

val allEq : (’a * ’b -> bool) -> ’a list * ’b list -> bool

val app : (’a * ’b -> unit) -> ’a list * ’b list -> unit

val appEq : (’a * ’b -> unit) -> ’a list * ’b list -> unit

val exists : (’a * ’b -> bool) -> ’a list * ’b list -> bool

val foldl : (’a * ’b * ’c -> ’c) -> ’c -> ’a list * ’b list -> ’c

val foldlEq : (’a * ’b * ’c -> ’c) -> ’c -> ’a list * ’b list -> ’c

val foldr : (’a * ’b * ’c -> ’c) -> ’c -> ’a list * ’b list -> ’c

val foldrEq : (’a * ’b * ’c -> ’c) -> ’c -> ’a list * ’b list -> ’c

val map : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list

val mapEq : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list

val unzip : (’a * ’b) list -> ’a list * ’b list

val zip : ’a list * ’b list -> (’a * ’b) list

val zipEq : ’a list * ’b list -> (’a * ’b) list

end

Structures that implement the signature

• ListPair : LIST_PAIR

26.18 MONO ARRAY

Provide a monomorphic array type and its primitive functions.

signature MONO_ARRAY =

sig

eqtype array

type elem

type vector

val all : (elem -> bool) -> array -> bool

val app : (elem -> unit) -> array -> unit

val appi : (int * elem -> unit) -> array -> unit

val array : int * elem -> array

val collate : (elem * elem -> order) -> array * array -> order

val copy : {src : array, dst : array, di : int} -> unit

val copyVec : {src : vector, dst : array, di : int} -> unit

val exists : (elem -> bool) -> array -> bool

val find : (elem -> bool) -> array -> elem option

val findi : (int * elem -> bool) -> array -> (int * elem) option

val foldl : (elem * ’b -> ’b) -> ’b -> array -> ’b

val foldli : (int * elem * ’b -> ’b) -> ’b -> array -> ’b

val foldr : (elem * ’b -> ’b) -> ’b -> array -> ’b

val foldri : (int * elem * ’b -> ’b) -> ’b -> array -> ’b

val fromList : elem list -> array

val length : array -> int

val maxLen : int

180 CHAPTER 26. STANDARD ML BASIS LIBRARY

val modify : (elem -> elem) -> array -> unit

val modifyi : (int * elem -> elem) -> array -> unit

val sub : array * int -> elem

val tabulate : int * (int -> elem) -> array

val update : array * int * elem -> unit

val vector : array -> vector

end

Structures that implement the signature

• CharArray : MONO_ARRAY

type array = char array

type elem = char

type vector = string

• Word8Array : MONO_ARRAY

type array = word8 array

type elem = word8

type vector = word8 vector

26.19 MONO ARRAY SLICE

Provide primitives for manipulating slices (sub-arrays) of monomorpic arrays.

signature MONO_ARRAY_SLICE =

sig

type array

type elem

type slice

type vector

type vector_slice

val all : (elem -> bool) -> slice -> bool

val app : (elem -> unit) -> slice -> unit

val appi : (int * elem -> unit) -> slice -> unit

val base : slice -> array * int * int

val collate : (elem * elem -> order) -> slice * slice -> order

val copy : {src : slice, dst : array, di : int} -> unit

val copyVec : {src : vector_slice, dst : array, di : int} -> unit

val exists : (elem -> bool) -> slice -> bool

val find : (elem -> bool) -> slice -> elem option

val findi : (int * elem -> bool) -> slice -> (int * elem) option

val foldl : (elem * ’b -> ’b) -> ’b -> slice -> ’b

val foldli : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b

val foldr : (elem * ’b -> ’b) -> ’b -> slice -> ’b

val foldri : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b

val full : array -> slice

val getItem : slice -> (elem * slice) option

val isEmpty : slice -> bool

val length : slice -> int

val modify : (elem -> elem) -> slice -> unit

val modifyi : (int * elem -> elem) -> slice -> unit

val slice : array * int * int option -> slice

val sub : slice * int -> elem

val subslice : slice * int * int option -> slice

val update : slice * int * elem -> unit

val vector : slice -> vector

end

26.20. MONO VECTOR 181

Structures that implement the signature

• CharArraySlice :> MONO_ARRAY_SLICE

type array = char array

type elem = char

type slice (= boxed)

type vector = string

type vector_slice = CharVectorSlice.slice

• Word8ArraySlice :> MONO_ARRAY_SLICE

type array = word8 array

type elem = word8

type slice (= boxed)

type vector = word8 vector

type vector_slice = Word8VectorSlice.slice

26.20 MONO VECTOR

Provide a monomorphic vector type and its primitive functions.

signature MONO_VECTOR =

sig

type vector

type elem

val all : (elem -> bool) -> vector -> bool

val app : (elem -> unit) -> vector -> unit

val appi : (int * elem -> unit) -> vector -> unit

val collate : (elem * elem -> order) -> vector * vector -> order

val concat : vector list -> vector

val exists : (elem -> bool) -> vector -> bool

val find : (elem -> bool) -> vector -> elem option

val findi : (int * elem -> bool) -> vector -> (int * elem) option

val foldl : (elem * ’a -> ’a) -> ’a -> vector -> ’a

val foldli : (int * elem * ’a -> ’a) -> ’a -> vector -> ’a

val foldr : (elem * ’a -> ’a) -> ’a -> vector -> ’a

val foldri : (int * elem * ’a -> ’a) -> ’a -> vector -> ’a

val fromList : elem list -> vector

val length : vector -> int

val map : (elem -> elem) -> vector -> vector

val mapi : (int * elem -> elem) -> vector -> vector

val maxLen : int

val sub : vector * int -> elem

val tabulate : int * (int -> elem) -> vector

val update : vector * int * elem -> vector

end

Structures that implement the signature

• CharVector : MONO_VECTOR

type elem = char

type vector = string

• Word8Array : MONO_ARRAY

type elem = word8

type vector = word8 vector

182 CHAPTER 26. STANDARD ML BASIS LIBRARY

26.21 MONO VECTOR SLICE

Provide primitives for manipulating slices (sub-vectors) of monomorpic vectors.

signature MONO_VECTOR_SLICE =

sig

type elem

type slice

type vector

val all : (elem -> bool) -> slice -> bool

val app : (elem -> unit) -> slice -> unit

val appi : (int * elem -> unit) -> slice -> unit

val base : slice -> vector * int * int

val collate : (elem * elem -> order) -> slice * slice -> order

val concat : slice list -> vector

val exists : (elem -> bool) -> slice -> bool

val find : (elem -> bool) -> slice -> elem option

val findi : (int * elem -> bool) -> slice -> (int * elem) option

val foldl : (elem * ’b -> ’b) -> ’b -> slice -> ’b

val foldli : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b

val foldr : (elem * ’b -> ’b) -> ’b -> slice -> ’b

val foldri : (int * elem * ’b -> ’b) -> ’b -> slice -> ’b

val full : vector -> slice

val getItem : slice -> (elem * slice) option

val isEmpty : slice -> bool

val length : slice -> int

val map : (elem -> elem) -> slice -> vector

val mapi : (int * elem -> elem) -> slice -> vector

val slice : vector * int * int option -> slice

val sub : slice * int -> elem

val subslice : slice * int * int option -> slice

val vector : slice -> vector

end

Structures that implement the signature

• CharVectorSlice :> MONO_VECTOR_SLICE

type elem = char

type slice (= boxed)

type vector = string

• Word8VectorSlice :> MONO_VECTOR_SLICE

type elem = word8

type slice (= boxed)

type vector = word8 vector

26.22 OPTION

Provide an operation type and primitive functions.

signature OPTION =

sig

datatype ’a option = NONE | SOME of ’a

exception Option

val app : (’a -> unit) -> ’a option -> unit

val compose : (’a -> ’b) * (’c -> ’a option) -> ’c -> ’b option

val composePartial : (’a -> ’b option) * (’c -> ’a option) -> ’c -> ’b option

val filter : (’a -> bool) -> ’a -> ’a option

26.23. OS 183

val getOpt : ’a option * ’a -> ’a

val isSome : ’a option -> bool

val join : ’a option option -> ’a option

val map : (’a -> ’b) -> ’a option -> ’b option

val mapPartial : (’a -> ’b option) -> ’a option -> ’b option

val valOf : ’a option -> ’a

end

• Option : OPTION

26.23 OS

Provide interface functions to the underling operating system.

signature OS =

sig

structure FileSys : OS_FILE_SYS

structure IO : OS_IO

structure Path : OS_PATH

structure Process : OS_PROCESS

eqtype syserror

exception SysErr of string * syserror option

val errorMsg : syserror -> string

val errorName : syserror -> string

val syserror : string -> syserror option

end

Nested signatures

• OS_FILE_SYS (26.24)

• OS_IO (26.25)

• OS_PATH (26.26)

• OS_PROCESS (26.27)

Structures that implement the signature

• OS : OS

eqtype syserror (= int)

structure FileSys = struct

type dirstream (= boxed)

end

structure Process = struct

type status = int

end

structure IO = struct

type iodesc (= int)

eqtype iodesc_kind (= word)

end

26.24 OS FILE SYS

Provide interface primitives for the underlying OS file system.

signature OS_FILE_SYS =

sig

datatype access_mode = A_READ | A_WRITE | A_EXEC

184 CHAPTER 26. STANDARD ML BASIS LIBRARY

type dirstream

eqtype file_id

val access : string * access_mode list -> bool

val chDir : string -> unit

val closeDir : dirstream -> unit

val compare : file_id * file_id -> order

val fileId : string -> file_id

val fileSize : string -> Position.int

val fullPath : string -> string

val getDir : unit -> string

val hash : file_id -> word

val isDir : string -> bool

val isLink : string -> bool

val mkDir : string -> unit

val modTime : string -> Time.time

val openDir : string -> dirstream

val readDir : dirstream -> string option

val readLink : string -> string

val realPath : string -> string

val remove : string -> unit

val rename : {old : string, new : string} -> unit

val rewindDir : dirstream -> unit

val rmDir : string -> unit

val setTime : string * Time.time option -> unit

val tmpName : unit -> string

end

26.25 OS IO

Provide interface primitives for the underlying OS IO.

signature OS_IO =

sig

eqtype iodesc

eqtype iodesc_kind

eqtype poll_desc

type poll_info

exception Poll

structure Kind : sig

val device : iodesc_kind

val dir : iodesc_kind

val file : iodesc_kind

val pipe : iodesc_kind

val socket : iodesc_kind

val symlink : iodesc_kind

val tty : iodesc_kind

end

val compare : iodesc * iodesc -> order

val hash : iodesc -> word

val infoToPollDesc : poll_info -> poll_desc

val isIn : poll_info -> bool

val isOut : poll_info -> bool

val isPri : poll_info -> bool

val kind : iodesc -> iodesc_kind

val poll : poll_desc list * Time.time option -> poll_info list

val pollDesc : iodesc -> poll_desc option

val pollIn : poll_desc -> poll_desc

val pollOut : poll_desc -> poll_desc

26.26. OS PATH 185

val pollPri : poll_desc -> poll_desc

val pollToIODesc : poll_desc -> iodesc

end

26.26 OS PATH

Provide primitives for manipulating file path structures in the underlying OS IO.

signature OS_PATH =

sig

exception InvalidArc

exception Path

val base : string -> string

val concat : string * string -> string

val currentArc : string

val dir : string -> string

val ext : string -> string option

val file : string -> string

val fromString : string -> {isAbs : bool, vol : string, arcs : string list}

val fromUnixPath : string -> string

val getParent : string -> string

val getVolume : string -> string

val isAbsolute : string -> bool

val isCanonical : string -> bool

val isRelative : string -> bool

val isRoot : string -> bool

val joinBaseExt : {base : string, ext : string option} -> string

val joinDirFile : {dir : string, file : string} -> string

val mkAbsolute : {path : string, relativeTo : string} -> string

val mkCanonical : string -> string

val mkRelative : {path : string, relativeTo : string} -> string

val parentArc : string

val splitBaseExt : string -> {base : string, ext : string option}

val splitDirFile : string -> {dir : string, file : string}

val toString : {isAbs : bool, vol : string, arcs : string list} -> string

val toUnixPath : string -> string

val validVolume : {isAbs : bool, vol : string} -> bool

end

26.27 OS PROCESS

Provide primitives for manipulating processes and threads in the underlying OS IO.

signature OS_PROCESS =

sig

type status

val atExit : (unit -> unit) -> unit

val exit : status -> ’a

val failure : status

val getEnv : string -> string option

val isSuccess : status -> bool

val sleep : Time.time -> unit

val success : status

val system : string -> status

val terminate : status -> ’a

end

186 CHAPTER 26. STANDARD ML BASIS LIBRARY

26.28 REAL

Provide primitive functions for floating point numbers.

signature REAL =

sig

type real

structure Math : MATH where type real = real

val != : real * real -> bool

val * : real * real -> real

val *+ : real * real * real -> real

val *- : real * real * real -> real

val + : real * real -> real

val - : real * real -> real

val / : real * real -> real

val < : real * real -> bool

val <= : real * real -> bool

val == : real * real -> bool

val > : real * real -> bool

val >= : real * real -> bool

val ?= : real * real -> bool

val abs : real -> real

val ceil : real -> int

val checkFloat : real -> real

val class : real -> IEEEReal.float_class

val compare : real * real -> order

val compareReal : real * real -> IEEEReal.real_order

val copySign : real * real -> real

val floor : real -> int

val fmt : StringCvt.realfmt -> real -> string

val fromDecimal : IEEEReal.decimal_approx -> real option

val fromInt : int -> real

val fromLarge : IEEEReal.rounding_mode -> LargeReal.real -> real

val fromLargeInt : LargeInt.int -> real

val fromManExp : {man : real, exp : int} -> real

val fromString : string -> real option

val isFinite : real -> bool

val isNan : real -> bool

val isNormal : real -> bool

val max : real * real -> real

val maxFinite : real

val min : real * real -> real

val minNormalPos : real

val minPos : real

val negInf : real

val nextAfter : real * real -> real

val posInf : real

val precision : int

val radix : int

val realCeil : real -> real

val realFloor : real -> real

val realMod : real -> real

val realRound : real -> real

val realTrunc : real -> real

val rem : real * real -> real

val round : real -> int

val sameSign : real * real -> bool

val scan : (char, ’a) StringCvt.reader -> (real, ’a) StringCvt.reader

val sign : real -> int

26.29. MATH 187

val signBit : real -> bool

val split : real -> {whole : real, frac : real}

val toDecimal : real -> IEEEReal.decimal_approx

val toInt : IEEEReal.rounding_mode -> real -> int

val toLarge : real -> LargeReal.real

val toLargeInt : IEEEReal.rounding_mode -> real -> LargeInt.int

val toManExp : real -> {man : real, exp : int}

val toString : real -> string

val trunc : real -> int

val unordered : real * real -> bool

val ~ : real -> real

end

Nested signatures

• MATH (26.29)

Structures that implement the signature

• Real : REAL

type real = real

Real64 and LargeReal are structure replications of Real.

• Real32 : REAL

type real = real32

26.29 MATH

Provide mathematical functions on floating-point numbers. This is a sub-signature of REAL.

signature MATH =

sig

type real

val acos : real -> real

val asin : real -> real

val atan : real -> real

val atan2 : real * real -> real

val cos : real -> real

val cosh : real -> real

val e : real

val exp : real -> real

val ln : real -> real

val log10 : real -> real

val pi : real

val pow : real * real -> real

val sin : real -> real

val sinh : real -> real

val sqrt : real -> real

val tan : real -> real

val tanh : real -> real

end

26.30 STRING

Provide primitives for manipulating character strings.

188 CHAPTER 26. STANDARD ML BASIS LIBRARY

signature STRING =

sig

eqtype char

eqtype string

val < : string * string -> bool

val <= : string * string -> bool

val > : string * string -> bool

val >= : string * string -> bool

val ^ : string * string -> string

val collate : (char * char -> order) -> string * string -> order

val compare : string * string -> order

val concat : string list -> string

val concatWith : string -> string list -> string

val explode : string -> char list

val extract : string * int * int option -> string

val fields : (char -> bool) -> string -> string list

val fromCString : string -> string option

val fromString : string -> string option

val implode : char list -> string

val isPrefix : string -> string -> bool

val isSubstring : string -> string -> bool

val isSuffix : string -> string -> bool

val map : (char -> char) -> string -> string

val maxSize : int

val scan : (char, ’a) StringCvt.reader -> (string, ’a) StringCvt.reader

val size : string -> int

val str : char -> string

val sub : string * int -> char

val substring : string * int * int -> string

val toCString : string -> string

val toString : string -> string

val tokens : (char -> bool) -> string -> string list

val translate : (char -> string) -> string -> string

end

Structures that implement the signature

• String : STRING

type char = char

type string = string

26.31 STRING CVT

Provide primitives for string manipulation.

signature STRING_CVT =

sig

datatype radix = BIN | OCT | DEC | HEX

type (’a,’b) reader = ’b -> (’a * ’b) option

datatype realfmt =

SCI of int option

| FIX of int option

| GEN of int option

| EXACT

type cs

val dropl : (char -> bool) -> (char, ’a) reader -> ’a -> ’a

val padLeft : char -> int -> string -> string

26.32. SUBSTRING 189

val padRight : char -> int -> string -> string

val scanString : ((char, cs) reader -> (’a, cs) reader) -> string -> ’a option

val skipWS : (char, ’a) reader -> ’a -> ’a

val splitl : (char -> bool) -> (char, ’a) reader -> ’a -> string * ’a

val takel : (char -> bool) -> (char, ’a) reader -> ’a -> string

end

Structures that implement the signature

• StringCvt : STRING_CVT

type cs (= boxed)

26.32 SUBSTRING

Provide primitives for a sub-string type and its primitive functions.

signature SUBSTRING =

sig

eqtype char

eqtype string

type substring

val app : (char -> unit) -> substring -> unit

val base : substring -> string * int * int

val collate : (char * char -> order) -> substring * substring -> order

val compare : substring * substring -> order

val concat : substring list -> string

val concatWith : string -> substring list -> string

val dropl : (char -> bool) -> substring -> substring

val dropr : (char -> bool) -> substring -> substring

val explode : substring -> char list

val extract : string * int * int option -> substring

val fields : (char -> bool) -> substring -> substring list

val first : substring -> char option

val foldl : (char * ’a -> ’a) -> ’a -> substring -> ’a

val foldr : (char * ’a -> ’a) -> ’a -> substring -> ’a

val full : string -> substring

val getc : substring -> (char * substring) option

val isEmpty : substring -> bool

val isPrefix : string -> substring -> bool

val isSubstring : string -> substring -> bool

val isSuffix : string -> substring -> bool

val position : string -> substring -> substring * substring

val size : substring -> int

val slice : substring * int * int option -> substring

val span : substring * substring -> substring

val splitAt : substring * int -> substring * substring

val splitl : (char -> bool) -> substring -> substring * substring

val splitr : (char -> bool) -> substring -> substring * substring

val string : substring -> string

val sub : substring * int -> char

val substring : string * int * int -> substring

val takel : (char -> bool) -> substring -> substring

val taker : (char -> bool) -> substring -> substring

val tokens : (char -> bool) -> substring -> substring list

val translate : (char -> string) -> substring -> string

val triml : int -> substring -> substring

val trimr : int -> substring -> substring

end

190 CHAPTER 26. STANDARD ML BASIS LIBRARY

Structures that implement the signature

• Substring :> SUBSTRING

where type substring = CharVectorSlice.slice

where type string = string

where type char = char

26.33 TEXT

Provide text structures.

signature TEXT =

sig

structure Char : CHAR

structure CharArray : MONO_ARRAY

structure CharArraySlice : MONO_ARRAY_SLICE

structure CharVector : MONO_VECTOR

structure CharVectorSlice : MONO_VECTOR_SLICE

structure String : STRING

structure Substring : SUBSTRING

sharing type

Char.char

= String.char

= Substring.char

= CharVector.elem

= CharArray.elem

= CharVectorSlice.elem

= CharArraySlice.elem

sharing type

Char.string

= String.string

= Substring.string

= CharVector.vector

= CharArray.vector

= CharVectorSlice.vector

= CharArraySlice.vector

sharing type

CharArray.array

= CharArraySlice.array

sharing type

CharVectorSlice.slice

= CharArraySlice.vector_slice

end

Structures that implement the signature

• Text : TEXT

26.34 TEXT IO

signature TEXT_IO =

sig

structure StreamIO : TEXT_STREAM_IO

where type reader = TextPrimIO.reader

where type writer = TextPrimIO.writer

where type pos = TextPrimIO.pos

type elem = StreamIO.elem

type instream

26.35. TEXT STREAM IO 191

type outstream

type vector = StreamIO.vector

val canInput : instream * int -> int option

val closeIn : instream -> unit

val closeOut : outstream -> unit

val endOfStream : instream -> bool

val flushOut : outstream -> unit

val getInstream : instream -> StreamIO.instream

val getOutstream : outstream -> StreamIO.outstream

val getPosOut : outstream -> StreamIO.out_pos

val input : instream -> vector

val input1 : instream -> elem option

val inputAll : instream -> vector

val inputLine : instream -> string option

val inputN : instream * int -> vector

val lookahead : instream -> elem option

val mkInstream : StreamIO.instream -> instream

val mkOutstream : StreamIO.outstream -> outstream

val openAppend : string -> outstream

val openIn : string -> instream

val openOut : string -> outstream

val openString : string -> instream

val output : outstream * vector -> unit

val output1 : outstream * elem -> unit

val outputSubstr : outstream * substring -> unit

val print : string -> unit

val scanStream

: ((Char.char, StreamIO.instream) StringCvt.reader

-> (’a, StreamIO.instream) StringCvt.reader)

-> instream

-> ’a option

val setInstream : instream * StreamIO.instream -> unit

val setOutstream : outstream * StreamIO.outstream -> unit

val setPosOut : outstream * StreamIO.out_pos -> unit

val stdErr : outstream

val stdIn : instream

val stdOut : outstream

end

Nested signatures

• TEXT_STREAM_IO (26.35)

Structures that implement the signature

• TextIO : TEXT_IO

26.35 TEXT STREAM IO

signature TEXT_STREAM_IO =

sig

include STREAM_IO

where type vector = CharVector.vector

where type elem = Char.char

val inputLine : instream -> (string * instream) option

val outputSubstr : outstream * substring -> unit

end

192 CHAPTER 26. STANDARD ML BASIS LIBRARY

26.36 PRIM IO

Provide low-level IO primitives.

signature PRIM_IO =

sig

type array

type array_slice

type elem

eqtype pos

datatype reader =

RD of {name : string,

chunkSize : int,

readVec : (int -> vector) option,

readArr : (array_slice -> int) option,

readVecNB : (int -> vector option) option,

readArrNB : (array_slice -> int option) option,

block : (unit -> unit) option,

canInput : (unit -> bool) option,

avail : unit -> int option,

getPos : (unit -> pos) option,

setPos : (pos -> unit) option,

endPos : (unit -> pos) option,

verifyPos : (unit -> pos) option,

close : unit -> unit,

ioDesc : OS.IO.iodesc option}

type vector

type vector_slice

datatype writer =

WR of {name : string,

chunkSize : int,

writeVec : (vector_slice -> int) option,

writeArr : (array_slice -> int) option,

writeVecNB : (vector_slice -> int option) option,

writeArrNB : (array_slice -> int option) option,

block : (unit -> unit) option,

canOutput : (unit -> bool) option,

getPos : (unit -> pos) option,

setPos : (pos -> unit) option,

endPos : (unit -> pos) option,

verifyPos : (unit -> pos) option,

close : unit -> unit,

ioDesc : OS.IO.iodesc option}

val augmentReader : reader -> reader

val augmentWriter : writer -> writer

val compare : pos * pos -> order

val nullRd : unit -> reader

val nullWr : unit -> writer

val openVector : vector -> reader

end

Structures that implement the signature

• structure BinPrimIO :> PRIM_IO

where type array = Word8Array.array

where type vector = Word8Vector.vector

where type elem = Word8.word

where type pos = Position.int

26.37. TIME 193

• structure TextPrimIO :> PRIM_IO

where type array = CharArray.array

where type vector = CharVector.vector

where type elem = Char.char

26.37 TIME

Provide a datatype for time and its primitive operations.

signature TIME =

sig

eqtype time

exception Time

val + : time * time -> time

val - : time * time -> time

val < : time * time -> bool

val <= : time * time -> bool

val > : time * time -> bool

val >= : time * time -> bool

val compare : time * time -> order

val fmt : int -> time -> string

val fromMicroseconds : LargeInt.int -> time

val fromMilliseconds : LargeInt.int -> time

val fromNanoseconds : LargeInt.int -> time

val fromReal : LargeReal.real -> time

val fromSeconds : LargeInt.int -> time

val fromString : string -> time option

val now : unit -> time

val scan : (char, ’a) StringCvt.reader -> (time, ’a) StringCvt.reader

val toMicroseconds : time -> LargeInt.int

val toMilliseconds : time -> LargeInt.int

val toNanoseconds : time -> LargeInt.int

val toReal : time -> LargeReal.real

val toSeconds : time -> LargeInt.int

val toString : time -> string

val zeroTime : time

end

Structures that implement the signature

• Time :> TIME

type time (= real)

26.38 TIMER

Provide a type for time and its primitive functions.

signature TIMER =

sig

type cpu_timer

type real_timer

val checkCPUTimer : cpu_timer -> {usr : Time.time, sys : Time.time}

val checkCPUTimes

: cpu_timer

-> {nongc : {usr : Time.time, sys : Time.time}, gc : {usr : Time.time, sys : Time.time}}

val checkGCTime : cpu_timer -> Time.time

val checkRealTimer : real_timer -> Time.time

194 CHAPTER 26. STANDARD ML BASIS LIBRARY

val startCPUTimer : unit -> cpu_timer

val startRealTimer : unit -> real_timer

val totalCPUTimer : unit -> cpu_timer

val totalRealTimer : unit -> real_timer

end

Structures that implement the signature

• Timer :> TIMERE

type cpu_timer (= boxed)

type real_timer (= boxed)

26.39 VECTOR

Provide a vector (immutable array) type and its primitive functions.

signature VECTOR =

sig

type ’a vector = ’a Vector.vector

val all : (’a -> bool) -> ’a vector -> bool

val app : (’a -> unit) -> ’a vector -> unit

val appi : (int * ’a -> unit) -> ’a vector -> unit

val collate : (’a * ’a -> order) -> ’a vector * ’a vector -> order

val concat : ’a vector list -> ’a vector

val exists : (’a -> bool) -> ’a vector -> bool

val find : (’a -> bool) -> ’a vector -> ’a option

val findi : (int * ’a -> bool) -> ’a vector -> (int * ’a) option

val foldl : (’a * ’b -> ’b) -> ’b -> ’a vector -> ’b

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a vector -> ’b

val foldr : (’a * ’b -> ’b) -> ’b -> ’a vector -> ’b

val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a vector -> ’b

val fromList : ’a list -> ’a vector

val length : ’a vector -> int

val map : (’a -> ’b) -> ’a vector -> ’b vector

val mapi : (int * ’a -> ’b) -> ’a vector -> ’b vector

val maxLen : int

val sub : ’a vector * int -> ’a

val tabulate : int * (int -> ’a) -> ’a vector

val update : ’a vector * int * ’a -> ’a vector

end

Structures that implement the signature

• Vector : VECTOR

26.40 VECTOR SLICE

Provide a type for vectors and its primitive functions.

signature VECTOR_SLICE =

sig

type ’a slice

val all : (’a -> bool) -> ’a slice -> bool

val app : (’a -> unit) -> ’a slice -> unit

val appi : (int * ’a -> unit) -> ’a slice -> unit

val base : ’a slice -> ’a Vector.vector * int * int

26.41. WORD 195

val collate : (’a * ’a -> order) -> ’a slice * ’a slice -> order

val concat : ’a slice list -> ’a Vector.vector

val exists : (’a -> bool) -> ’a slice -> bool

val find : (’a -> bool) -> ’a slice -> ’a option

val findi : (int * ’a -> bool) -> ’a slice -> (int * ’a) option

val foldl : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val foldli : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val foldr : (’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val foldri : (int * ’a * ’b -> ’b) -> ’b -> ’a slice -> ’b

val full : ’a Vector.vector -> ’a slice

val getItem : ’a slice -> (’a * ’a slice) option

val isEmpty : ’a slice -> bool

val length : ’a slice -> int

val map : (’a -> ’b) -> ’a slice -> ’b Vector.vector

val mapi : (int * ’a -> ’b) -> ’a slice -> ’b Vector.vector

val slice : ’a Vector.vector * int * int option -> ’a slice

val sub : ’a slice * int -> ’a

val subslice : ’a slice * int * int option -> ’a slice

val vector : ’a slice -> ’a Vector.vector

end

Structures that implement the signature

• VectorSlice :> VECTOR_SLICE

type ’a slice (= boxed)

26.41 WORD

Provide primitive functions for unsigned integers.

signature WORD =

sig

eqtype word

val * : word * word -> word

val + : word * word -> word

val - : word * word -> word

val < : word * word -> bool

val << : word * Word.word -> word

val <= : word * word -> bool

val > : word * word -> bool

val >= : word * word -> bool

val >> : word * Word.word -> word

val andb : word * word -> word

val compare : word * word -> order

val div : word * word -> word

val fmt : StringCvt.radix -> word -> string

val fromInt : int -> word

val fromLarge : LargeWord.word -> word

val fromLargeInt : LargeInt.int -> word

val fromLargeWord : LargeWord.word -> word

val fromString : string -> word option

val max : word * word -> word

val min : word * word -> word

val mod : word * word -> word

val notb : word -> word

val orb : word * word -> word

val scan : StringCvt.radix -> (char, ’a) StringCvt.reader -> (word, ’a) StringCvt.reader

196 CHAPTER 26. STANDARD ML BASIS LIBRARY

val toInt : word -> int

val toIntX : word -> int

val toLarge : word -> LargeWord.word

val toLargeInt : word -> LargeInt.int

val toLargeIntX : word -> LargeInt.int

val toLargeWord : word -> LargeWord.word

val toLargeWordX : word -> LargeWord.word

val toLargeX : word -> LargeWord.word

val toString : word -> string

val wordSize : int

val xorb : word * word -> word

val ~ : word -> word

val ~>> : word * Word.word -> word

end

Structures that implement the signature

• Word : WORD

type word = word

Word32 is a structure replication of Word

• Word64 : WORD

type word = word64

LargeWord is a structure replication of Word64

• Word8 : WORD

type word = word8

26.42 The top-level environment

Commonly used functions defined in libraries are replicated in the top-level environment. This section
shows the top-level bindings of identifiers defined in the Standard ML Basis Library.

• infix declarations

infix 7 * / div mod

infix 6 + - ^

infixr 5 :: @

infix 4 = <> > >= < <=

infix 3 := o

infix 0 before

• type declarations

type substring = Substring.substring

datatype order = datatype General.order

• exception declarations

exception Bind = General.Bind

exception Chr= General.Chr

exception Div= General.Div

exception Domain= General.Domain

exception Empty = List.Empty

exception Fail = General.Fail

exception Match= General.Match

26.42. THE TOP-LEVEL ENVIRONMENT 197

exception Overflow= General.Overflow

exception Size= General.Size

exception Span= General.Span

exception Subscript = General.Subscript

exception Option = Option.Option

exception Span = General.Span

• val declaration

val = = <builtin> : [’’a. ’’a * ’’a -> bool]}

val <> = <builtin> : [’’a. ’’a * ’’a -> bool]}

val ! = General.!

val := = General.:=

val @ = List.@

val ^ = String.^

val app = List.app

val before = General.before

val ceil = Real.ceil

val chr = Char.chr

val concat = String.concat

val exnMessage = General.exnMessage

val exnName = General.exnName

val explode = String.explode

val floor = Real.floor

val foldl = List.foldl

val foldr = List.foldr

val getOpt = Option.getOpt

val hd = List.hd

val ignore = General.ignore

val implode = String.implode

val isSome = Option.isSome

val length = List.length

val map = List.map

val not = Bool.not

val null = List.null

val o = General.o

val ord = Char.ord

val print = TextIO.print

val real = Real.fromInt

val rev = List.rev

val round = Real.round

val size = String.size

val str = String.str

val substring = String.substring

val tl = List.tl

val trunc = Real.trunc

val valOf = Option.valOf

val vector = Vector.fromList

The equality check primitives = and <> are built-in functions that are directly supported by the
SML# compiler.

• Overloaded identifiers

val * : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf, real, real32}. ’a * ’a -> ’a]

val + : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf, real, real32}. ’a * ’a -> ’a]

val - : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf, real, real32}. ’a * ’a -> ’a]

val / : [’a::{real, real32}. ’a * ’a -> ’a]

val < : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf, real, real32, string, char}. ’a * ’a -> ’a]

198 CHAPTER 26. STANDARD ML BASIS LIBRARY

val <= : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf, real, real32, string, char}. ’a * ’a -> ’a]

val > : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf, real, real32, string, char}. ’a * ’a -> ’a]

val >= : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf, real, real32, string, char}. ’a * ’a -> ’a]

val \ : [’a::{real, real32}. ’a -> ’a]

val abs : [’a::{int, int8, int16, int64, real, real32}. ’a -> ’a]

val div : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf}. ’a * ’a -> ’a]

val mod : [’a::{int, word, int8, word8, int16, word16, int64, word64, intInf}. ’a * ’a -> ’a]

Chapter 27

SML# System Library

In addition to Standard ML Basis Library, SML# provides its own libraries for exploiting SML# language
features. Being SML# specific libraries, they are directly provided through interface files (smi files)
without signature specification. The are organized into library interface files (smi files), which are
referenced by file name (⟨librarySmiFilePath⟩) without specifying file paths (⟨smiFilePath⟩).

The current version provide the following.

Library name structure name (section)
"ffi.smi" DynamicLink (27.1)

Pointer (27.2)

"sql.smi" SQL (27.3)
SQL.Op (27.4)
SQL.Numeric (27.5)

"thread.smi" Pthread (27.6)
Myth (27.7)

"reify.smi" Dynamic (27.8)

These libraries may be referred by the compiler to realize the SML# extensions. To use the following
SML# extensions in separate compilation mode, you must _require the following libraries from your
interface file:

• To use SQL expressions, you must _require "sql.smi".

• To call a polymorphic function with #reify kind, you must _require "reify.smi".

27.1 DynamicLink

Interfce

structure DynamicLink =

struct

type lib (= boxed)

datatype mode = LAZY | NOW

datatype scope = GLOBAL | LOCAL

val default : unit -> lib

val dlclose : lib -> unit

val dlopen : string -> lib

val dlopen’ : string * scope * mode -> lib

val dlsym : lib * string -> codeptr

val dlsym’ : lib * string -> unit ptr

val next : unit -> lib

end

199

200 CHAPTER 27. SML# SYSTEM LIBRARY

Types

• lib An abstract type representing an internal handle of opened dynamic link library.

• mode Open mode for dlopen’ primitive. NOW indicates that the library file is opened when dlopen’

is called. LAZY indicate that dlopen’ checks and only prepares to open the library file, which will
be opened when some reference will be made at runtime.

27.2 Pointer

Interfce

structure Pointer =

struct

val NULL : [’a. unit -> ’a ptr]

val advance : [’a. ’a ptr * int -> ’a ptr]

val importBytes : word8 ptr * int -> word8 vector

val importString : char ptr -> string

val isNull : [’a. ’a ptr -> bool]

val load : [’a. ’a ptr -> ’a]

val store : [’a. ’a ptr * ’a -> unit]

end

27.3 SQL

See Section 22.8 for details of the SQL library.

Nested structures

• Op(27.4)

• Numeric(27.5)

27.4 SQL.Op

See Section 22.9 for details of the SQL.Op structure.

27.5 SQL.Numeric

See Section 22.10 for details of the SQL.Num structure.

27.6 Pthread

Interfce

structure Pthread =

struct

type thread (= *)

structure Thread =

struct

type thread = thread

val create : (unit -> int) -> thread

val detach : thread -> unit

val join : thread -> int

val exit : int -> unit

val self : unit -> thread

val equal : thread * thread -> bool

end

27.7. MYTH 201

type mutex (= array)

structure Mutex =

struct

type mutex = mutex

val create : unit -> mutex

val lock : mutex -> unit

val unlock : mutex -> unit

val trylock : mutex -> bool

val destroy : mutex -> unit

end

type cond (= array)

structure Cond =

struct

type cond = cond

val create : unit -> cond

val signal : cond -> unit

val broadcast : cond -> unit

val wait : cond * mutex -> unit

val destroy : cond -> unit

end

end

27.7 Myth

Interfce

structure Myth =

struct

type thread (= *)

structure Thread =

struct

type thread = thread

val create : (unit -> int) -> thread

val detach : thread -> unit

val join : thread -> int

val exit : int -> unit

val yield : unit -> unit

val self : unit -> thread

val equal : thread * thread -> bool

end

type mutex (= array)

structure Mutex =

struct

type mutex = mutex

val create : unit -> mutex

val lock : mutex -> unit

val unlock : mutex -> unit

val trylock : mutex -> bool

val destroy : mutex -> unit

end

type cond (= array)

structure Cond =

struct

type cond = cond

val create : unit -> cond

val signal : cond -> unit

val broadcast : cond -> unit

val wait : cond * mutex -> unit

202 CHAPTER 27. SML# SYSTEM LIBRARY

val destroy : cond -> unit

end

type barrier (= array)

structure Barrier =

struct

type barrier = barrier

val create : int -> barrier

val wait : barrier -> bool

val destroy : barrier -> unit

end

end

27.8 Dynamic

Interfce

structure Dynamic =

struct

datatype term =

ARRAY of ty * boxed

| ARRAY_PRINT of term array

| BOOL of bool

| BOXED of boxed

| BOUNDVAR

| BUILTIN

| CHAR of char

| CODEPTR of word64

| DATATYPE of string * term option * ty

| DYNAMIC of ty * boxed

| EXN of {exnName: string, hasArg: bool}

| EXNTAG

| FUN of {closure: boxed, ty: ty}

| IENVMAP of (int * term) list

| INT32 of int

| INT16 of int16

| INT64 of int64

| INT8 of int8

| INTERNAL

| INTINF of intInf

| LIST of term list

| NULL

| NULL_WITHTy of ty

| OPAQUE

| OPTION of term option * ty

| PTR of word64

| REAL64 of real

| REAL32 of real32

| RECORDLABEL of RecordLabel.label

| RECORDLABELMAP of (RecordLabel.label * term) list

| RECORD of term RecordLabel.Map.map

| REF of ty * boxed

| REF_PRINT of term

| SENVMAP of (string * term) list

| STRING of string

| VOID

| VOID_WITHTy of ty

| UNIT

| UNPRINTABLE

27.8. DYNAMIC 203

| VECTOR of ty * boxed

| VECTOR_PRINT of term vector

| WORD32 of word

| WORD16 of word16

| WORD64 of word64

| WORD8 of word8

datatype ty =

ARRAYty of ty

| BOOLty

| BOTTOMty

| BOXEDty

| BOUNDVARty of BoundTypeVarID.id

| CHARty

| CODEPTRty

| CONSTRUCTty

of {args: ty list,

conSet: ty option SEnv.map,

id: ReifiedTy.typId,

layout: ReifiedTy.layout,

longsymbol: {loc: Loc.pos * Loc.pos, string: string} list,

size: int}

| DATATYPEty

of {args: ty list,

id: ReifiedTy.typId,

layout: ReifiedTy.layout,

longsymbol: {loc: Loc.pos * Loc.pos, string: string} list,

size: int}

| DUMMYty of {boxed: bool, size: word}

| DYNAMICty of ty

| ERRORty

| EXNTAGty

| EXNty

| FUNMty of ty list * ty

| IENVMAPty of ty

| INT16ty

| INT64ty

| INT8ty

| INTERNALty

| INTINFty

| INT32ty

| LISTty of ty

| OPAQUEty

of {args: ty list,

id: ReifiedTy.typId,

longsymbol: {loc: Loc.pos * Loc.pos, string: string} list,

size: int}

| OPTIONty of ty

| POLYty

of {body: ty,

boundenv: BoundTypeVarID.id BoundTypeVarID.Map.map}

| PTRty of ty

| REAL32ty

| REAL64ty

| RECORDLABELty

| RECORDLABELMAPty of ty

| RECORDty of ty RecordLabel.Map.map

| REFty of ty

| SENVMAPty of ty

204 CHAPTER 27. SML# SYSTEM LIBRARY

| STRINGty

| TYVARty

| UNITty

| VECTORty of ty

| VOIDty

| WORD16ty

| WORD64ty

| WORD8ty

| WORD32ty

type ’a dyn (= boxed)

type void (= unit)

type dynamic = void dyn

exception RuntimeTypeError

val dynamic = fn : [’a#reify. ’a -> void dyn]

val dynamicToString = fn : void dyn -> string

val dynamicToTerm = fn : void dyn -> term

val dynamicToTy = fn : void dyn -> ty

val dynamicToTyString = fn : void dyn -> string

val format = fn : [’a#reify. ’a -> string]

val fromJson = fn : string -> void dyn

val fromJsonFile = fn : string -> void dyn

val join = fn : void dyn * void dyn -> void dyn

val pp = fn : [’a#reify. ’a -> unit]

val termToDynamic = fn : term -> void dyn

val termToString = fn : term -> string

val termToTy = fn : term -> ty

val toJson = fn : [’a. ’a dyn -> string]

val tyToString = fn : ty -> string

val valueToJson = fn : [’a#reify. ’a -> string]

val view = fn : [’a#reify. ’a dyn -> ’a]

...

end

Chapter 28

The smlsharp command

The smlsharp command invokes the SML# compiler to translate SML# programs into machine code,
generate object files, and link them together into an executable file. Similarly to the traditional C
compiler driver command, the user can do only one step of this compilation sequence by specifying
a mode switch to the smlsharp command. The interactive session is also invoked by the smlsharp

command.
The synopsis of smlsharp command is as follows:

smlsharp [option · · ·] [--] [inputFile · · ·]

Each argument of smlsharp command is either a command line option or input file name. A command
line usually starts with a minus sign (-). The order of command line options does not matter except for
a few options such as -I and -L. Optional -- indicates the end of the command line option sequence; any
arguments after -- are not interpreted as options. Arguments other than options are input file names.
The input file names may be interleaved with the option sequence. Regardless of the order of options
and input file names, all command line options are interpreted at first, and then the effect of the options
are applied to all input files.

In addition, several environment variables affects the behavior of the smlsharp command. Such
environment variables also affects not only smlsharp but also all programs compiled by the SML#
compiler.

In this chapter, we introduce smlsharp’s command line options and environment variables separately
for each category.

28.1 Mode switch

The following options specifies an execution mode of the smlsharp command. At most one of these
options may be specified in a command line.

--help Print the help message and exit.

-fsyntax-only Check the syntax of the given sml files and smi files and exit. Specifying this option
together with -o option is not allowed. The result of the syntax check is reported by error messages
and exit status.

-ftypecheck-only Perform the typecheck of the given sml files and smi files and exit. Specifying this
option together with -o option is not allowed. The result of the syntax check is reported by error
messages and exit status.

-S Compile the given sml files and generate assembly code files. By default, the name of the output file
is obtained by replacing the .sml suffix of the input file name with .s. If only one input file is
given, you may specify the name of output file by -o option.

-c Compile the given sml files and generate object files. By default, the name of the output file is
obtained by replacing the .sml suffix of the input file name with .o. If only one input file is given,
you may specify the name of output file by -o option.

205

206 CHAPTER 28. THE SMLSHARP COMMAND

-Mm Generate a Makefile that compiles and links programs, the entries of which are specified by the
given .smi files as input files. It computes all file dependencies for compiling and linking from the
given .smi files. If your project does not use source-generating tools such as ml-lex and ml-yacc,
this mode generates a complete Makefile for that project. If -o is specified together, the result is
written in the specified output file instead of the standard output.

-MMm Same as -Mm except that files in the standard library are omitted.

-M Print the list of source files required to compile each of the given sml files in the format of Makefile
rule. If -o is specified together, the result is written in the specified output file instead of the
standard output.

-MM Same as -M except that files in the standard library are omitted.

-Ml Print the list of object files required when linking a program with each of the given smi files. If -o is
specified together, the result is written in the specified output file instead of the standard output.

-MMl Same as -Ml except that files in the standard library are omitted.

If none of the above options is specified, the execution mode of smlsharp is decided by the input
files.

• If no input file is given, it starts the interactive session.

• Otherwise, smlsharp goes into link mode. In this mode, the input file list may include at most
one .smi or .sml file. If a .smi file is given, it computes the list of .smi files by tracing require

relationship from the given .smi file, searches for an object file corresponding to each .smi file in
the list, and links the object files found all together. For details of the object file search, see the
description of -filemap option. If a .sml file is given, it compiles the given .sml file to an object
file and then obtains the list of object files as if its corresponding .smi file is given as a input file.
Any other input files must be object or library files that the system linker accepts. The smlsharp
command invokes the system linker and passes the list of input files to the linker.

Note that in link mode, similarly to the system linker, the order of input files is significant. An
object file that has unresolved symbols must precede those that provide them.

The file name of the executable program is a.out by default. You may specify it by -o option.

28.2 Common options for all modes

-o filename Output the result to the file named filename. The contents of the output file varies from
modes.

-v Be verbose. If this option is set, all command lines of external commands invoked by smlsharp

command and their output are printed. If this option is set without any input file, it prints the
SML# version and exits.

28.3 Compile options

The following options controls file search and code generation of the SML# compiler. Options in this
category also affects the interactive session and link mode.

-Idir Add the directory dir to the search path of .smi files. If multiple -I options are specified, the
SML# compiler searches .smi file in the given order. Note that this option is also effective in link
mode for computing object file list to be linked.

-nostdpath Search for .smi files only in directories specified by -I options.

-O, -O0, -O1, -O2, -O3, -Os, -Oz Change the optimization level. -O0 disables optimization. -O1 to -O3

enable optimization. Bigger number allows more aggressive optimization. -O is an alias of -O2.
-Os and -Oz makes code size smaller. If more than one of these options are specified, all of them
except for the last one are ignored.

28.4. LINK OPTIONS 207

--target=target, -mcmodel model , -march arch, -mcpu cpu, -mattr attrs Set the target, code model,
architecture, CPU, and code generation attributes of LLVM’s code generator. model must be ei-
ther small, medium, large, or kernel. attrs is a comma-separated list of attributes. See LLVM
manual or help of llc command for details.

-fpic, -fPIC, -fno-pic, -mdynamic-no-pic Set the code relocation model. -fpic is an alias of -fPIC.
-fPIC forces the code generator to generate relocatable code. -fno-pic is for non-relocatable code.
-mdynamic-no-pic means non-relocatable code containing position independent external symbols.
See LLVM manual for details. If none of them is specified, the default model is selected depending
on the target platform.

-Xllc arg, -Xopt arg Add arg to the additional arguments to be passed to LLVM’s llc and opt

command, which are invoked by smlsharp for code generation. If more than one of them are
given, all of them are passed to the LLVM commands in the given order.

-emit-llvm Output LLVM IR instead of native code when creating a file of compilation result. If in
-S mode, smlsharp generates text LLVM IR code instead of assembly code. The default suffix of
the output file is changed from .s to .ll. If in -c mode, it generates LLVM bitcode file instead of
object file. The default suffix of the output file is changed from .o to .bc.

28.4 Link options

The following options control the behavior of linker. All options in this category also affects the inter-
active session.

-llibrary Link with the specified library. In interactive session, this option allows the user to import
functions in the given library interactively.

-Ldir Add the directory dir to the library search path. If more than two -L options are specified, it
searches for libraries in the given order.

-nostdlib Search for libraries only in directories specified by -L options.

-c++ Use C++ compiler driver instead of C compiler driver for linking. This is needed to link a SML#
program with C++ libraries.

-Wl args, -Xlinker arg Add args to the additional arguments to be passed to the C/C++ compiler
driver command when linking. args of -Wl is a comma-separated list of arguments. -Xlinker

specifies just one argument. If more than two of them are specified, all of them are passed to
C/C++ compiler driver command in the given order.

-filemap filename Use filename as the map of filenames that the compiler uses for searching for files.
The smlsharp command attempts to obtain object file name by replacing the .smi suffix of a
.smi file with .o. By specifying this option, you can change this correspondence. Each line of
the given file must be a = sign followed by a filename that the compiler generates followed by its
corresponding file, separated by white-spaces. The map file must contain all files that would be
visited by the compiler. If a file not in the map file is needed, it causes an error.

28.5 Interactive mode options

-r smifile Load additional .smi file for the initial environment. This option is useful if you want to
make your own library available in the interactive session. The library indicated by the given
.smi file must be compiled, in other words, all of the object files constituting the library must be
prepared. The smlsharp command obtains the object files as if the .smi file is specified in link
mode, link them to a shared library, and load it through the system facility of dynamic loading.

208 CHAPTER 28. THE SMLSHARP COMMAND

28.6 Developers’ options

The following options are for SML# compiler development.

-d [switch] Set compiler developers’ switch switch. if switch is omitted, it goes into verbose mode for
compiler developers. If -d without switch is specified together with --help, it prints the list of
compiler developers’ switches.

-B dir Set the directory containing compiler configuration file (config.mk) and the SML# standard
libraries.

28.7 Environment variables

The SML# compiler refers to the following environment variables:

SMLSHARP HEAPSIZE This gives the compiler the hint of the minimum and maximum heap size. The
content of this variable must be the minimum size followed by a comma followed by the maximum
size. The heap size must be a decimal integer with an optional suffix K (killo), M (mega), G (giga),
or T (tera). The maximum size may be omitted. If omitted, dynamic heap expansion is disabled.
The default setting is “32M:256M.” If the compiler is aborted due to memory exhaustion, increase
the heap size by this environment variable.

SMLSHARP VERBOSE This indicates the verbose level of the SML# runtime in an integer from 0 to 5. Its
default is 2. This is provided for SML# compiler developers.

SMLSHARP LIBMYSQLCLIENT, SMLSHARP LIBODBC, SMLSHARP LIBPQ These specify the database libraries
that the SML# compiler uses in the interactive mode. Set them if you meet an library load error
when using SQL features of SML#.

28.8 Typical examples

28.8.1 Start an interactive session

A typical way to start an interactive session is to execute smlsharp command with no argument.

$ smlsharp

When you use a C library in the interactive session, specify -l option with the name of the library. For
example, if you want to use zlib library, do

$ smlsharp -lz

The libraries SML# uses, such as the standard C library and POSIX thread library, are available by
default. You can use them without -l option.

28.8.2 Compile a program

If your program consists of only one .sml file (and its corresponding .smi file), just give the .sml file to
smlsharp command and you will obtain its executable file.

$ smlsharp foo.sml

If you don’t like the default name a.out, change it by -o option.

$ smlsharp -o foo foo.sml

28.8. TYPICAL EXAMPLES 209

28.8.3 Compile separately and link a program

A typical way to compile and link a program consisting of multiple files is the following:

$ smlsharp -c -O2 foo.sml

$ smlsharp -c -O2 bar.sml

$ smlsharp -c -O2 baz.sml

$ smlsharp foo.smi

First, compile each .sml file in the project separately in random order by the smlsharp command with
-c. If the compilation of foo.sml is done successfully, its object file foo.o is generated. After compiling
all .sml files, link their object files into an executable file by giving the smlsharp command the .smi file
whose top-level code is the entry of the program (in this example, foo.smi). At this time, the smlsharp
command traces all .smi files reachable from foo.smi through require relationship recursively and
obtains the list of object files to be linked by replacing their .smi suffix with .o.

If you change this default correspondence from .smi files to .o files, create a map file and give it by
-filemap option like the following:

$ smlsharp -c -O2 -o obj/foo.o foo.sml

$ smlsharp -c -O2 -o obj/bar.o bar.sml

$ smlsharp -c -O2 -o obj/baz.o baz.sml

$ smlsharp -filemap=objmap foo.smi

The contents of objmap file is given below:

= foo.o obj/foo.o

= bar.o obj/bar.o

= baz.o obj/baz.o

SML# programs may be linked with arbitrary C/C++ programs and libraries. To link your program
with C/C++ libraries, give them to the smlsharp command with a .smi file. For example, to link
foo.sml with a C program util.c and C libraries libgl and libglu, do

$ smlsharp -c -O2 foo.sml

$ cc -c -O2 util.c

$ smlsharp foo.smi util.o -lgl -lglu

28.8.4 Generate a Makefile

it is useful to combine SML# with “make” command so that your program is separately compiled and
linked automatically. To use make command, you need to create a Makefile that includes dependencies
between source files. By smlsharp -Mm command, you can automatically obtain a complete Makefile for
building a SML# program automatically.

For example, suppose a project consisting of three .smi files foo.smi, bar.smi, and baz.smi (and
their corresponding .sml files). The require relationship between them is as follows:

• foo.smi requires bar.smi.

• bar.smi requires baz.smi.

In this case,

$ smlsharp -Mm foo.smi -o Makefile

generates the following Makefile:

SMLSHARP = smlsharp

SMLFLAGS = -O2

LIBS =

all: foo

foo: foo.o bar.o baz.o foo.smi

$(SMLSHARP) $(LDFLAGS) -o $@ foo.smi $(LIBS)

foo.o: foo.sml foo.smi bar.smi baz.smi

$(SMLSHARP) $(SMLFLAGS) -o $@ -c u.sml

210 CHAPTER 28. THE SMLSHARP COMMAND

bar.o: bar.sml bar.smi baz.smi

$(SMLSHARP) $(SMLFLAGS) -o $@ -c u.sml

baz.o: baz.sml baz.smi

$(SMLSHARP) $(SMLFLAGS) -o $@ -c u.sml

Then, just do make and build your program.

% make

smlsharp -o foo.o -c foo.sml

smlsharp -o bar.o -c bar.sml

smlsharp -o baz.o -c baz.sml

smlsharp -o foo foo.smi

Every time you modify the program and its require relationship is changed, you need to do smlsharp

-MMm to update the Makefile.
If your project contains source files of ml-lex and ml-yacc, smlsharp -Mm is not enough. You need

additional rules that invokes those tools to generate .sml files. For example, if your project has a parser
parser.grm, create Makefile by smlsharp -Mm and then add the following rule to the Makefile by hand:

parser.grm.sml parser.grm.sig: parser.grm

ml-yacc parser.grm

parser.grm.sig: parser.grm.sml

It should be useful if you separate two Makefiles, one of which is automatically generated by smlsharp

-Mm and another of which includes the additional rules. A simple way to manage two Makefiles is to
organize Makefile with additional rules and include of the automatically generated one. For example,
create a Makefile like the following:

The default target is "all".

all:

File dependency is automatically generated and included.

depend.mk:

smlsharp -Mm foo.smi -o depend.mk

include depend.mk

Additional rules.

parser.grm.sml parser.grm.sig: parser.grm

ml-yacc parser.grm

parser.grm.sig: parser.grm.sml

Of course, you can exploit your favorite Makefile techniques.

Chapter 29

SML# Run-time data management

SML# adopts the most natural data representation (the data representation that the ABI (Application
Binary Interface) of the target platform adpots) for all the basic data types. For example, in x86 64
platform, int is a 32-bit integer, and real is a 64-bit IEEE754 floating point number. The evaluation of
expressions of these types are performed by using appropriate registers. In arrays, tuples, and records,
these data are aligned appropriately. The natural data representation is kept in the entire SML# program
including polymorphic functions.

SML#’s separate compilation and interoperability with C is realized on top of this natural data rep-
resentation. Therefore, power users that exploits these features need detailed knowledge about runtime
data representation. This chapter describes the runtime data representation and memory management
of SML#.

29.1 Runtime representation

Any type constructor that the SML# compiler manages has its “size” on memory, “tag” indicating
whether or not GC traces, and “representation” indicating the range and semantics of bits. We refer
to the triple of these as the runtime representation of a type constructor. The runtime representation
of a type is determined by its outermost type constructor. The following are runtime representations of
built-in types.

built-in type constructor size (in bytes) tag representation
int, int32 4 0 signed integer

int8 1 0 signed integer
int16 2 0 signed integer
int64 8 0 signed integer

word, word32 4 0 unsigned integer
word8 1 0 unsigned integer
word16 2 0 unsigned integer
word64 8 0 unsigned integer
char 1 0 unspecified

real, real64 8 0 IEEE754 floating point number
real32 4 0 IEEE754 floating point number
ptr 4 or 8 0 void* of C

codeptr 4 or 8 0 function pointer of C
unit 4 0 unique variant
contag 4 0 unspecified
boxed 4 or 8 1 unspecified
array 4 or 8 1 non-null pointer
vector 4 or 8 1 non-null pointer
ref 4 or 8 1 non-null pointer

string 4 or 8 1 non-null pointer
exn 4 or 8 1 non-null pointer

record type, tuple type 4 or 8 1 non-null pointer
function type 4 or 8 1 non-null pointer

211

212 CHAPTER 29. SML# RUN-TIME DATA MANAGEMENT

The size of the type whose size is “4 or 8” depends on whether the target platform is 32-bit or 64-bit.

For any type constructors, their alignments are equal to their size. The alignments should be equal
to C’s alignments, but current SML# compiler gives alignments constantly regardless of target platform
information (this restriction will be refined in the future version of SML#).

The runtime representation of user-defined types defined by datatype declaration is calculated from
the set of data constructors as follows:

• If the type has only one data constructor without argument, the runtime representation is equal
to the unit type.

• If the type has two or more data constructor, each of which has no argument, the runtime repre-
sentation is euqal to the contag type.

• Otherwise, the runtime representation is equal to the boxed type.

When computing runtime represenatation, the alias type defined by type declaration are all expanded.
The runtime representation of opaque types introduced by opaque signature constraints is equal to that
of the implementation type of the opaque type. The runtime representation of the types declared as
opaque types by an interface file is equal to that of the implementation type given by its opaque type
declaration in the interface file.

29.2 Effect of garbage collection

Data of type whose tag is 1 are managed under SML#’s memory management system. In what follows,
we refer to those data as boxed data. The memory area of boxed data is allocated implicitly when its
data constructor is evaluated, and released automatically by SML#’s garbage collector. To pass boxed
data to C functions, you need to pay attention to not only their contents but also the timing when the
memory is released. In perspective of C functions, boxed data have the following properties:

1. Boxed data are not moved similarly to the data allocated by C’s malloc function. Therefore, the
identity of SML#’s arrays and refs is preserved even in C functions. Since tuple and record values
are neigher moved as long as the values are alive.

2. Arguments passed from SML# to C functions are passed without any modification. Neither data
conversion, allocation, nor regeneration may occur. Therefore, C function may update SML#’s
arrays and refs and SML# program see the effect of C’s memory update.

3. Boxed data passed to C function are never released during the C function ends. When C function
ends and SML# program has control, the boxed data passed to C is not alive in the SML#
program, the boxed data is released.

4. Callback functions are never released until the program ends. It is allowed for C functions to store
callback functions to global variables. The value of free variables of callback functions are preserved
even if the thread is different between the caller and callback. Note that you need to pay attetion
to memory leak when you use callback functions. The SML# compiler guarantees that no memory
leak occur if you only use top-level functions as callback functions.

5. SML#’s garbage collector is accurate garbage collector that only scans SML#’s heap and stack.
GC may release boxed data to which SML# program cannot refer even if they are stored in C
heap and hence C functions can refer to them. Therefore, it is not allowed for C functions to store
boxed data to C heap. Since boxed data are alive until C function ends, it is safe to store them in
registers and stack frames.

29.3 Effect of unwind jumps

SML# and C/C++ provides jumps that unwinds call stack. In SML# and C++, exceptions are provided.
In C, setjmp and longjmp are provided. These unwind jump mechanism can be used in combination
with SML#’s callback functions. Unwind jumps has the following properties:

29.4. EFFECT OF MULTITHREADING 213

1. SML#’s exception handling mechanism is implemented through Itanium ABI, similarly to C++’s
exception mechanism. Therefore, cleanup handlers may be invoked by SML#’s exceptions. For
example, destructors of C++ local variables are executed appropriately when callback SML#
function raises an exception.

2. Exceptions raised by SML#’s raise expression can be handled only by SML#’s handle expression.
The handle expression only handles SML# exceptions and hence it is not able to handle other
kind of unwind jumps.

3. If SML#’s exception is not caught by any handle expression, the program aborts.

4. C++ and SML# exceptions works independently of each other with SML# callback functions.

5. C’s setjmp and longjmp also work with SML# callback functions. It is not valid to create any
loop in a SML# program by using setjmp and longjmp.

29.4 Effect of multithreading

SML# allows the users to import C functions that spawns new threads. Even if SML# callback functions
are called from a thread that C function creates, the SML# runtime detects the new threads and
runs SML# programs concurrently in multiple threads. Similarly to the C programs, SML# uses the
multithread support provided by the underlying operating system. If operating system supports parallel
execution of multiple threads on multicore CPUs, SML# program using multiple threads runs in parallel.

Threads of SML# program shares a unique SML# heap. Interthread communication can be realized
by updating arrays. Exclusive execution is performed by calling C function that realizes exclusive
execution. Since SML# never move data on heap, you are allowed to allocate C’s semaphores and
mutexes on SML#’s heap.

This is all abort SML#’s multithread support. Current SML# does not provide high-level thread
library, but it is open to the users to write it in SML#. The future version of SML# will be likely to
provide a parallel programming framework.

Part IV

Programming Tools

215

Chapter 30

A parser generator smlyacc and
smllex

A paper generator smlyacc and a lexer generator smllex are bundled with the SML# distribution. The
original programs were developed by Andrew W. Appel and David R. Tarditi Jr., and distributed for the
SML/NJ system. The license and documents are found in src/ml-yacc/COPYRIGHT and src/ml-yacc/doc/mlyacc.pdf.
They are ported to the SML# separate compile system. The readers are referred to the src/ml-yacc/doc/mlyacc.pdf
for for source file syntax, including smlyacc grammar rules and smllex regular expressions.

This document describes how to run the programs and and to use the generated parser and lexer in
SML#.

30.1 The generated files

The SML# installer will compile and install smlyacc and smllex commands, which are used to generate
the SML# system. These commands generates the following SML# source files.

command input file generated files Contents
smlyacc ⟨YaccInputFileName⟩ .grm ⟨YaccInputFileName⟩ .grm.sml A Parser Program

⟨YaccInputFileName⟩ .grm.sig Parser’s Token signature
⟨YaccInputFileName⟩ .grm.desc LR automaton state descriptions

smllex ⟨LexInputFileName⟩ .lex ⟨LexInputFileName⟩ .lex.sml A Lexical analyzer

• smlyacc command only takes an input file name ⟨YaccInputFileName⟩ .grm. The output file name
can be specified with the following environment variable:

SMLYACC_OUTPUT= ⟨YaccOutputFileName⟩ .sml

The specification of the output file includes its suffix (.sml). With this environment variable is
set, smlyacc generates the token signature at the top of the output file.

• smllex command only takes an input file name ⟨LexInputFileName⟩ .lex. The output file name
can be specified with the following environment variable:

SMLLEX_OUTPUT= ⟨LexOutputFileName⟩ .sml

The specification of the output file includes its suffix (.sml).

30.2 The structure of a smlyacc input file

An input file of smlyacc has the following general structure.

⟨SML# code for user declarations ⟩
%%

⟨YACC declarations for grammar rule interpretation⟩
%%

⟨descriptions of grammar rules and their attributes⟩

217

218 CHAPTER 30. A PARSER GENERATOR SMLYACC AND SMLLEX

1. The SML# code for user declarations section specifies any user level code which will be used in
attribute specifications in the rule section.

2. The YACC declarations for grammar rule interpretation section include meta-level declarations
for grammar rules such as non-terminal associations, and directives for smlyacc. The meta-level
declarations for grammar rules are the same as the standard YACC system. The reader is referred
to src/ml-yacc/doc/mlyacc.pdf for the details.

When using the generated parser source in SML#, the following directives should be specified.

%name <Name>

%header (structure <Name>)

%eop EOF SEMICOLON

%pos int

%term EOF

| CHAR of char

...

%nonterm id of Symbol.symbol

| longid of Symbol.longsymbol

...

• %namespecification. It specifies the name of the parser. The name <Name>_TOKENS will be
used is the name of the generated toke structure.

• %headerspecification. smlyacc will generate the parser program as a structure body in the
following format.

= struct

...

end

%header() specifies the code fragment that will be In order to use the generated parser in
the SML# separate compilation mode, it needs to include the preamble of the structure
declaration as above.

• %posspecificaion. It specifies the type of the text position used in smllex.

• %eopspecificaion. It defines the set of terminal symbols that end the parsing.

• %termspecificaion. The set of terminal symbol names is defined as a form of datatype construc-
tor. For each terminal symbol name, smlyacc generates a token forming function of the forms
EOF : pos * pos -> token (without argument) or CHAR : char * pos * pos -> token

(with arguments). The generated token functions are put into the <Name>_TOKENS structure
and is shared by smllex.

• %nontermspecificaion. The set of non-terminal symbols are defined as a form of constructor
having the type of its attribute. The attribute type is the type of expression associated to the
grammar rule of that non terminal symbol.

3. The descriptions of grammar rules and their attributes section defines the sets of terminal and
non-terminal symbols, and the set of grammar rules and their associated action rules. The
syntax for the rules as the same as the standard YACC system. The reader is referred to
src/ml-yacc/doc/mlyacc.pdf for the details.

30.3 The structure of a smlyacc output file and the interface
file specification

smlyacc generates a file ⟨YaccInputFile⟩ .grm.sml containing one structure of the following signature.

signature ML_LRVALS =

sig

structure Tokens : ML_TOKENS

structure Parser : PARSER

sharing type Parser.token = Tokens.token

end

30.3. THE STRUCTUREOF A SMLYACCOUTPUT FILE AND THE INTERFACE FILE SPECIFICATION219

This signature and other supporting library for smlyacc are collected in smlyacc-lib.smi. In order
to use the generated parser program file, the following interface file must be written.

_require "basis.smi"

_require "ml-yacc-lib.smi"

structure <Name> =

struct

structure Parser =

struct

type token (= boxed)

type stream (= boxed)

type result = Absyn.parseresult

type pos = int

type arg = unit

exception ParseError

val makeStream : {lexer:unit -> token} -> stream

val consStream : token * stream -> stream

val getStream : stream -> token * stream

val sameToken : token * token -> bool

val parse : {lookahead:int,

stream:stream,

error: (string * pos * pos -> unit),

arg: arg}

-> result * stream

end

structure Tokens =

struct

type pos = Parser.pos

type token = Parser.token

<the set of Token forming functions>

...

val EOF: word * pos * pos -> token

val CHAR: string * pos * pos -> token

....

end

end

In Parser structure, pos，arg，result types are those that are specified in ⟨YaccInputFileName⟩ .grm.
The other components are fixed and should be specified as above. To write the Token structure，copy
the contents of the ⟨YaccInputFileName⟩ .grm.sig signature generated by smlyacc.

The components are described below.

• token type. The abstract type for the token returned by the lexer generated by smllex.

• stream type. The abstract type for the input stream of the parser.

• result type. The type of the output of the parser. It should be the same as the type of the
attribute of the top-level grammar rule specified in the ⟨YaccInputFile⟩ .grm file. の属の性の型と
同一である．

• pos type. The position data type used by the lexer.

• arg type. The additional argument type for the parser specified in the ⟨YaccInputFile⟩ .grm file.

• ParseError exception. Parse error exception generated by the parser.

• makeStream function. It takes a lexer and return the input stream for the parser.

• consStream function. This up-push one token to the given input stream.

• getStream function. It returns the first token in the current input stream.

220 CHAPTER 30. A PARSER GENERATOR SMLYACC AND SMLLEX

• sameToken function. Token equality checking function.

• parse function. The parser function. It takes the current input stream and returns the generated
abstract syntax tree and the rest of the input stream.

30.4 The structure of a smllex input file

An input file of smllex has the following general structure.

⟨user declarations⟩
%%

⟨LEX declarations⟩
%%

⟨descriptions of regular expressions and their attributes⟩

1. The user declaration section The SML# code for user declarations section specifies the types
that are used in lexical analysis and any other user level code which will be used in attribute
specifications in the regular expression section.

The mandatory specifications are the following.

type lexresult = ...

fun eof () = ...

• lexresult type．The type of the value of returned by the lexer when the lexer accepts a
regular expression. When using with the smlyacc, this is usually the token type defined in
⟨YaccInputFile⟩ .grm file.

• eof function. This is the function that is called when the lexical analyzer detects the end of
file. It usually returns the value (of type lexresult) that represent the end of file token.

2. The LEX declaration section

This section specifies directives for smllex functions and auxiliary definitions for specifying reg-
ular expressions in the regular expression section. The syntax of auxiliary definitions for regular
expressions are the same as the standard LEX system.

smllex directives include the following.

• %structure宣言．smllex generate a lexical analyzer as a structure. This declaration specifies
the name of the structure as follows.

%structure MLLex

• %arg 宣言．This specifies an extra argument to be passed to the lexical analyzer. It can be
omitted if no extra argument is needed.

• %full 宣言．This specifies that the generated lexer handles 8 bit character.

3. The regular expression definition section This section defines the set of regular expressions to be
accepted.

For the details of the specification, consult the document src/ml-lex/doc/mllex.pdf in the SML#
source code distribution.

30.5 The interface file for the generated lexer

smllex generate a structure containing a lexer creating function makeLexer. In order to use the generated
lexer program file, a interface file must be written. The minimal interface is of the following form.

30.5. THE INTERFACE FILE FOR THE GENERATED LEXER 221

_require "basis.smi"

_require "coreML.grm.smi"

structure CoreMLLex =

struct

val makeLexer : (int -> string) -> unit -> CoreML.Tokens.token

end

The first argument to the makeLexer is a function that takes a number and return an input string of that
specified size. Applying this function to an input function like makeLexer (fn n => TextIO.inputN(TextIO.stdIn,n)

generates a lexer function of type unit -> token. This lexer function can be specified as an argument
to the makeStream function of the parser to obtain a token stream for the parser input.

User declarations such as extra arguments are placed in the UserDeclarations structure. Its interface
file should be of the following form.

_require "basis.smi"

_require "<YaccInputFile>.grm.smi"

structure MLLex =

struct

structure UserDeclarations =

struct

type token = <YaccName>.Tokens.token

type pos = <YaccName>.Tokens.pos

type arg (= boxed)

end

val makeLexer

: (int -> string) -> UserDeclarations.arg -> unit -> UserDeclarations.token

end

Part V

SML# Internals and Data
Structures

223

Chapter 31

Preface

This part presents internals and data structures of the SML# compiler. The objective of this part is pro-
vide the readers who have appropriate backgrounds on functional programming languages to understand
the details of the SML# compiler.

Although the main intended audience are compiler developers and researchers, who are interested in
extending SML# or developing new compilers, efforts have been made to make this document should a
reference document for general readers who are interested in high level programming language compilers.

There are excellent codes in open-source software, many of which we truly respect. One of the
problems we often feels against open-source culture is the lack of effort and enthusiasm to document
the structures and functions of these excellent codes. The contention that code written in a declarative
language is itself self-documenting is a vain argument for large and complicated systems containing
hundreds of thousands of lines. A large and complicated software system inevitably contains implicit
assumptions and various meta-level data that control behavior of multiple components of the system.
To understand the system, it is therefore necessary to understand the encoded semantics of those control
data and the flow of control of the multiple related components. Currently, the only way to solve this
problem is to document the system. We further believe that a detailed document of a large software
system could itself be a valuable asset for open-source community.

In this part, we attempt to provide such a document on the SML# system, taking “VAX/VMS
internals and data structures” [4] as a model. In addition to descriptions of the code, we try to provide
the design rationale, relevant theory, algorithm, and implementation techniques underlying the code.

Part V contains the following.

1. Chapter 32 describes the SML# distribution package.

2. Chapter 33 outline the control flow of the SML# compiler.

3. Each of the following chapters describes the structure and function of each of the modules in the
order of compilation flow described in Chapter 33. Chapter 33 describes main module.

4. Chapter 33 describes toplebel module.

5. we shall continue writing the entire internals, and shall uploaded them as they become ready …

6.

225

Chapter 32

The SML# Source Distribution
Package

SML# distribution package smlsharp-4.0.0.tar.gz contains the sources and other resources for the
SML# compiler, the Standard ML Basis library, and several supporting tools.

32.1 The structure of the source package

SML# source distribution package smlsharp-4.0.0.tar.gz consists of the directories and files.

• Directories

benchmark/ benchmark programs
precompiled/ assembry source archives for minismlsharp
sample/ sample programs
src/ the SML# source files
test/ test programs and data

• files

Changes the release notes
INSTALL install instructions
LICENSE the SML# license
Makefile.in Makefile template
RELEASE_DATE the release date
VERSION the current version
config.h.in config.h template.
config.mk.in config.mk template containing configuration parameters used in Makefile

configure.ac input to autoconf

depend.mk source file dependency
files.mk file sets definition
mkdepend A shell script to generate depend.mk
precompile.mk a make script for re-generating precompiled/ archives

32.2 The SML# Source Tree

The SML# source directory src consists of the following directories and files.

• Directories

– SML# compiler source

227

228 CHAPTER 32. THE SML# SOURCE DISTRIBUTION PACKAGE

basis/ the Standard ML Basis Library
compiler/ the SML# compiler
config/ the library to access system parameter set by configure

ffi/ the support library for direct C interface
llvm/ the LLVM code generation library
runtime/ the runtime system
sql/ the SQL integration support library
thread/ the thread support library
unix-utils/ the library for UNIX basic commands

– SML# tools

smlformat/ smlformatthe pretty printer generator
smlunit/ the unit test library

These are general purpose tools we have developed for SML#. Since they are relatively
small system independent of the SML# compiler, we omit their description in this current
document.

– third-party codes

ml-lex/ a lexer generator
ml-yacc/ a parser generator
smlnj/ smlnj source files used in basis/

smlnj-lib/ smlnj utility library

These third-party codes are ported to SML#. They are are included here with their licenses.
make system compiles them with SML# source code to build the SML# system. This docu-
ment does not describe these code.

• Files

basis.smi the interface file of the Standard ML Basis Library
builtin.smi the interface file to bind builtin data
config.mk definition of environment variables of the compiler command
config.mk.in the template file of config.mk
config.sed the sed script to generate config.mk
ffi.smi the interface file of the direct C interface
foreach.smi the interface file of data parallel execution
json.smi the interface file of JSON support
ml-yacc-lib.smi the interface file of the smlyacc library
prelude.smi the interface file of interactive mode
reifyTy.smi the interface file for reflection
smlformat-lib.smi the interface file of the smlformat library
smlnj-lib.smi the interface file of smlnj-lib
smlunit-lib.smi the interface file of smlunit
sql.smi the interface file of the SQL integration support
thread.smi the interface file of the thread support

32.3 compiler directory

The compiler directory is divided into sub-directory, as shown.

• Directories

– compilePhases/ : compilation phases

32.3. COMPILER DIRECTORY 229

bitmapcompilation/ explicit layout-bitmap generation
cconvcompile/ type-directed calling-convention generation
closureconversion/ closure conversion
datatypecompilation/ datalayout computation
elaborate/ syntactic elaboration
fficompilation/ C interface generation for higher-order functions
llvmemit/ llvm code emission
llvmgen/

loadfile/

machinecodegen/ law-level code generation
main/

matchcompilation/ pattern matching compilation
nameevaluation/ name evaluation and module compilation
parser/ parser
recordcalcoptimization/ typed record calculus optimization
recordcompilation/ type-directed record compilation
stackallocation/ stack frame allocation
toplevel/

typedcalcoptimization/ typed intermediate language optimization
typedelaboration/

typeinference/ type definition，uncurry optimization
valrecoptimization/ mutual recursive function optimization

– compilerIRs/ : compiler intermediate representations

absyn/ Abstract syntax tree
anormal/ A-normal forms
bitmapcalc/ the language with explicit layout bitmap
closurecalc/ the language with explicit closure allocation
idcalc/ the language without static scoping
llvmir/ LLVM IR
machinecode/ the register transfer language
patterncalc/ the untyped intermediate language
recordcalc/ the polymorphic record calculus
runtimecalc/ the language with runtime types
typedcalc/ the typed intermediate language
typedlambda/ the typed lambda calculus

– data/ : types, constants and other data

builtin/ compiler built-in data
constantterm/ constants
control/ parameters controlling compiler function
name/ runtime code labels
runtimetypes/ runtime types
symbols/ representation of variables, labels etc
types/ type representations

– extensions/ : various compile functions

concurrencysupport/ concurrent thread support
debug/ debugging support
foreach/ massively parallel _foreach statement support
format-utils/ formater library for smlformat
json/ JSON manipulation support
reflection/ compile-time reflection support
usererror/ compiler error handling
userlevelprimitive/ compiler extension via user code

– libs/ : libraries used by the compiler

230 CHAPTER 32. THE SML# SOURCE DISTRIBUTION PACKAGE

digest/& SHA hashing library
env/ dictionary utilities
heapdump/ heap image dump function
ids/ counter utilities
interactivePrinter/ interactive printers
list-utils/ list utilities
toolchain/ UNIX toolchain commands
util/ miscellaneous utility functions

• Files

minismlsharp.smi the interface file of minismlshap
minismlsharp.sml the top-level of the compiler to compile smlsharp
smlsharp.smi the interface file of smlsharp
smlsharp.sml smlsharp top-level

Each of directories, including compiler sub-directories, contains the main sub-directory, where
the source files are located. For example, the source files for abstract syntax trees are placed in
compilerIRs/absyn/main/. Source files include program files with .sml suffix and the corresponding
interface files of the same names with .smi suffix.

Files with following suffix are input files of source file generation tools.

.ppg an input file to smlformat pretty-printer generator.

.grm an smlyacc input file

.lex an smlyacc input file
An interface file having of one of those

names with .smi suffix describes the interface of the generated source program.

32.4 basis directory

basis/ is the Standard ML Basis Library source file directory, whose main sub-directory contains the
following files.

1. Signature files

32.4. BASIS DIRECTORY 231

ARRAY.sig

ARRAY_SLICE.sig

BIN_IO.sig

BOOL.sig

BYTE.sig

CHAR.sig

COMMAND_LINE.sig

DATE.sig

GENERAL.sig

IEEE_REAL.sig

IMPERATIVE_IO.sig

INTEGER.sig

INT_INF.sig

IO.sig

LIST.sig

LIST_PAIR.sig

MATH.sig

MONO_ARRAY.sig

MONO_ARRAY_SLICE.sig

MONO_VECTOR.sig

MONO_VECTOR_SLICE.sig

OPTION.sig

OS.sig

OS_FILE_SYS.sig

OS_IO.sig

OS_PATH.sig

OS_PROCESS.sig

PRIM_IO.sig

REAL.sig

STREAM_IO.sig

STRING.sig

STRING_CVT.sig

SUBSTRING.sig

TEXT.sig

TEXT_IO.sig

TEXT_STREAM_IO.sig

TIME.sig

TIMER.sig

VECTOR.sig

VECTOR_SLICE.sig

WORD.sig

2. Common generic codes

ArraySlice_common.sml

Array_common.sml

VectorSlice_common.sml

Vector_common.sml

3. Structure files directories

For each of the following names, the directory contains the program file with .sml suffix and the
interface file with .smi suffix.

232 CHAPTER 32. THE SML# SOURCE DISTRIBUTION PACKAGE

Array

ArraySlice

Bool

Byte

Char

CharArray

CharArraySlice

CharVector

CharVectorSlice

CommandLine

Date

General

IEEEReal

IO

Int

IntInf

List

ListPair

OS

Option

Real

Real32

String

StringCvt

Substring

Text

Time

Timer

Vector

VectorSlice

Word

Word8

Word8Array

Word8ArraySlice

Word8Vector

Word8VectorSlice

4. SML# support files

The following files provide SML# specific low-level support for efficient implementation of the basis
library.

SMLSharp_Runtime SML# runtime primitives
SMLSharp_OSFileSys primitives for OS structures
SMLSharp_OSIO primitives for IO structures
SMLSharp_OSProcess primitives for OS.Process
SMLSharp_RealClass primitives for Real structures
SMLSharp_ScanChar primitives for scan functions

5. top-level

toplevel.sml top-level declarations
toplevel.smi the interface file of the top-level declarations

Chapter 33

Control structure of the compiler

This chapter describes the control structure of the SML# compiler.

1. Source code locations

• src/compiler/minismlsharp.{smi,sml} files src/compiler/smlsharp.{smi,sml} files

• src/compiler/compilePhase/main directory

• src/compiler/compilePhase/toplevel directory

2. Overview

(a) Compiler starat up by src/compiler/minismlsharp.sml.

(b) The compiler command main functions by src/compiler/compilePhase/main module.

(c) The top-level compile phase processing by src/compiler/compilePhase/toplevel.

33.1 Compiler Start-up

The SML# compiler is an SML# program separately compiled and liked by the SML# compiler. As we
explain in chapter ??, the main function of an SML# program, initially called from the SML# runtime
system, sequentially evaluets the top-level declarations of the set of source files in an order that respects
the dependency among the source files. The set of source files of an SML# program consists of the
source file corresponding to the root interface file specified as a command line argument to the link mode
SML# command, and the source files correspondig to the interface files that are (directly and indirectly)
referenced from the root interface file.

The SML# compiler command is linked by the following shell command written in Makefile file for
the target src/compiler/smlsharp.

$(SMLSHARP_ENV) $(SMLSHARP_STAGE1) -Bsrc -nostdpath $(SMLFLAGS) \

-filemap=filemap \

$(RDYNAMIC_LDFLAGS) $(LLVM_SMLSHARP_LDFLAGS) --link-all \

$(srcdir)/src/compiler/smlsharp.smi \

$(COMPILER_SUPPORT_OBJECTS) $(LLVM_LIBS) $(LLVM_SYSLIBS) -o $@

In the standard configuration, the shell variable SMLSHARP_STAGE1 is bound to minismlsharp com-
mande, which is the same as smlsharp except that it links a minimal set of libraries. The top-lebel
source file of the SML# compiler is

./src/compiler/smlsharp.sml

which corresponds to the root interface file ./src/compiler/smlsharp.smi specified in the avove shell
command. This file consists of the following four lines.

val commandLineName = CommandLine.name ()

val commandArgs = CommandLine.arguments ()

val status = Main.main (commandLineName, commandArgs)

val () = OS.Process.exit status

233

234 CHAPTER 33. CONTROL STRUCTURE OF THE COMPILER

Main.main is the following main function written in the file Main.sml in comiler/compilePhases/main/main
directory.

val main : string * string list -> OS.Process.status

This is the top-level function of the SML# compiler. This function takes a command name (smlsharp)
string and command line parameter string list, and perform compilations and linking according to the
parameter specification.

33.2 The compiler command main function

The main function of the SML# command is the follwing function in the directory comiler/compilePhases/main/main/.

val main : string * string list -> OS.Process.status

The argument pair consists of the command name (smlsharp or minismlsharp) and the command line
argument kist. This function invokes command function to do the following.

1. Parse the arugment list and determine the command mode and the set of command options.

2. Perfoms one of the following depending on the command mode.

(a) Compile source files.

(b) Compile and link one soruce file.

(c) Link a system specified by a root .smi file.

(d) Generate dependency and Makefile for a soure file.

(e) Print various information.

Compiling a source file is done by compileSMLFile function in the following steps.

• Open the source file.

• Generate a compile ontext (topContext) prepared by the command function.

• Compile the source file by the Top.compile function in comiler/compilePhases/top/main/,
which has the following type.

val compile

: LLVMUtils.compile_options

-> options

-> toplevelContext

-> Parser.input

-> InterfaceName.dependency * result

The return value type InterfacceName.dependency represent the set of interface files used
by the source file, and result denotes the generated object file.

Compile and link is done by link function in the following steps.

(a) If the input is a soruce file (.sml file), then compile it to obtain an object file and the set of
dependent interface files. If the input file is an interface file (.smi file), determine the root
object file, and obtain the set of dependent interface files by calling loadSMI function.

(b) Link the root object file, the set of dependent object files and the referenced library files by
calling the system linker.

33.3 The compiler toplevel

The toplevel function of the SML# compiler is function Top.compile definde in comiler/compilePhases/toplevel/main/Top.sml
file. Its has the following type.

33.3. THE COMPILER TOPLEVEL 235

val compile :

: LLVMUtils.compile_options

-> options

-> toplevelContext

-> Parser.input

-> InterfaceName.dependency * result

It takes LLVM code generation options, compile options, compile context, input stream of the source
file, compiles the source and returns the set of dependent interface files and the result object file. This
function is called from compileSML function in Main.sml file. It compiles the source file by calling the
funtions of the compilation phases as shown in the following table.

Compile step Compile Phase Function Source Language Target Language
1 Parser.parse (input stream) Absyn.absyn

2 LoadFile.load Absyn.absyn AbsynInterface.compile_unit

3 Elaborator.elaborate AbsynInterface.compile_unit PatternCalcInterface.compile_unit

4 NameEval.nameEval PatternCalcInterface.compile_unit IDCalc.topdecl

5 TypedElaboration.elaborate IDCalc.topdecl IDCalc.topdecl

6 VALREC_Optimizer.optimize IDCalc.topdecl IDCalc.topdecl

7 InferTypes.typeinf IDCalc.topdecl TypedCalc.tpdecl list

8 UncurryFundecl.optimize TypedCalc.tpdecl list TypedCalc.tpdecl list

9 PolyTyElimination.compile TypedCalc.tpdecl list TypedCalc.tpdecl list

10 TPOptimize.optimize TypedCalc.tpdecl list TypedCalc.tpdecl list

11 MatchCompiler.compile TypedCalc.tpdecl list RecordCalc.rcdecl list

12 FFICompilation.compile RecordCalc.rcdecl list RecordCalc.rcdecl list

13 RecordCompilation.compile RecordCalc.rcdecl list RecordCalc.rcdecl list

13 DatatypeCompilation.compile RecordCalc.rcdecl list TypedLambda.tldecl list

14 BitmapCompilation2.compile TypedCalc.tpdecl list BitmapCalc2.bcdecl list

15 ClosureConversion2.convert BitmapCalc2.bcdecl list ClosureCalc.program

16 CallingConventionCompile.compile ClosureCalc.program RuntimeCalc.program

17 ANormalize.compile RuntimeCalc.program ANormal.program

18 MachineCodeGen.compile ANormal.program MachineCode.program

18 ConcurrencySupport.insertCheckGC MachineCode.program MachineCode.program

19 StackAllocation.compile MachineCode.program MachineCode.program

19 LLVMGen.compile MachineCode.program LLVMIR.program

20 LLVMEmit.emit LLVMIR.program LLVM.LLVMModuleRef

Part VI

Bibliography and other documents

237

Bibliography

[1] P. Buneman and A. Ohori. Polymorphism and type inference in database programming. ACM
Transactions on Database Systems, 21(1):30–74, 1996.

[2] E. R. Gansner and J. Reppy. The Standard ML Basis Library. Cambridge University Press, 2002.

[3] M.J. Gordon, A.J.R.G. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mechanized Logic of
Computation. Lecture Note in Computer Science. Springer-Verlag, 1979.

[4] Lawrence J. Kenah and Simon F. Bate. VAX/VMS internals and data structures. Digital Press,
Newton, MA, USA, 1984.

[5] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, 1990.

[6] R. Milner, R. Tofte, M. Harper, and D. MacQueen. The Definition of Standard ML. The MIT
Press, revised edition, 1997.

[7] H-D. Nguyen and A. Ohori. Compiling ml polymporphism with explicit layout bitmap. In Proceed-
ings of ACM Conference on Principles and Practice of Declarative Programming, pages 237–248,
2006.

[8] A Ohori. A compilation method for ML-style polymorphic record calculi. In Proceedings of ACM
Symposium on Principles of Programming Languages, pages 154–165, 1992.

[9] A. Ohori. A polymorphic record calculus and its compilation. ACM Transactions on Programming
Languages and Systems, 17(6):844–895, 1995. A preliminary summary appeared at ACM POPL,
1992 under the title “A compilation method for ML-style polymorphic record calculi”.

[10] A. Ohori and P. Buneman. Type inference in a database programming language. In Proc. ACM
Conference on LISP and Functional Programming, pages 174–183, Snowbird, Utah, July 1988.

[11] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli – a poly-
morphic language with static type inference. In Proc. the ACM SIGMOD conference, pages 46–57,
Portland, Oregon, May – June 1989.

[12] A Ohori and I. Sasano. Lightweight fusion by fixed point promotion. In Proceedings of ACM
Symposium on Principles of Programming Languages, pages 143–154, 2007.

[13] A. Ohori and T. Takamizawa. A polymorphic unboxed calculus as an abstract machine for poly-
morphic languages. J. Lisp and Symbolic Comput., 10(1):61–91, 1997.

[14] A. Ohori and K. Ueno. Making Standard ML a practical database programming language. In
Proceedings of the ACM International Conference on Functional Programming, pages 307–319, 2011.

[15] A. Ohori and N. Yoshida. Type inference with rank 1 polymorphism for type-directed compilation
of ML. In Proc. ACM International Conference on Functional Programming, pages 160–171, 1999.

[16] K. Ueno, A Ohori, and T. Otomo. An efficient non-moving garbage collector for functional languages.
In Proceedings of the ACM International Conference on Functional Programming, 2011.

[17] Atsushi Ohori, Katsuhiro Ueno, Tomohiro Sasaki, Daisuke Kikuchi. A Calculus with Partially
Dynamic Records for Typeful Manipulation of JSON Objects. In Proceedings of the European
Concerence on Object-Oriented Programming, pages 421-433, 2016.

In Proc. ECOOP Conference, pages 18:1-18:25, 2016.

239

240 BIBLIOGRAPHY

[18] Katsuhiro Ueno, Atsushi Ohori. A fully concurrent garbage collector for functional programs on mul-
ticore processors. In Proceedings of the ACM International Conference on Functional Programming,
pages 421-433, 2016.

[19] 大堀 淳. プログラミング言語 Standard ML入門. 共立出版, 2000.

